数据结构——lesson5栈和队列详解

hellohello~这里是土土数据结构学习笔记🥳🥳
在这里插入图片描述

💥个人主页:大耳朵土土垚的博客
💥 所属专栏:数据结构学习笔记
💥对于顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~感谢大家的观看与支持🌹🌹🌹
有问题可以写在评论区或者私信我哦~

前言:

之前的博客我们学习了数据结构中的顺序表和链表,现在我们一起回顾一下它们各自的优缺点。
首先是顺序表
✨优点:
1.支持下标的随机访问(因为是数组的形式);
2.尾插尾删比较方便,效率不错;
3.CPU高速缓存命中率较高;
✨ 缺点:
1.前面部分插入删除数据需要挪动数据,时间复杂度为O(n);
2.空间不够需要扩容——一方面扩容需要付出代价例如异地扩容, 另一方面扩容一般还伴随着空间的浪费;
其次是链表
✨优点:
1.任意位置插入删除数据都比较方便高效,时间复杂度为O(1);
2.按需申请释放空间
✨缺点:
1.不支持下标的随机访问;
2.CPU高速缓存命中率较低;
我们发现顺序表的优点和缺点恰好对应着链表的缺点和优点,顺序表和链表各自都有它们独特的作用与优势,不存在优劣之分。大家在使用的时候要根据自己的需求去选择哦~


一、栈


1.1栈的概念及结构

栈: 一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。

1.2栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

在这里插入图片描述

如图所示,左边是栈尾,右边是栈顶(进行出栈也就是删除操作);
以下是栈的实现:

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>typedef int STDataType;// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack//定义一个结构体表现栈
{STDataType* a;int top;       // 栈顶int capacity;  // 容量 
}Stack;
// 初始化栈 
void StackInit(Stack* ps);
// 入栈 
void StackPush(Stack* ps, STDataType data);
// 出栈 
void StackPop(Stack* ps);
// 获取栈顶元素 
STDataType StackTop(Stack* ps);
// 获取栈中有效元素个数 
int StackSize(Stack* ps);
// 检测栈是否为空,如果为空返回true,如果不为空返回false
bool StackEmpty(Stack* ps);
// 销毁栈 
void StackDestroy(Stack* ps);

栈实现包括初始化,入栈,出栈,获取栈顶元素,获取栈中有效元素个数,判断栈是否为空以及销毁栈这7个函数。

下面我们来具体实现栈:

(1)初始化栈

void StackInit(Stack* ps);

// 初始化栈 
void StackInit(Stack* ps)
{assert(ps);ps->a = NULL;ps->capacity = 0;ps->top = 0;//指向栈顶的下一个数据//ps->top = -1; //则指向栈顶数据
}

这里要注意ps->top = 0 代表的是栈顶元素的下一个;ps->top = -1才指向栈顶元素,因为后面的函数每增加一个元素,ps->top++,如果初始化top = 0,加一个元素后,top=1;表示的位置是下标为1(其本质是数组,下标为1的位置表示第二个元素),但确间接表明了栈中元素的个数刚好为1,所以为了后续方便,我们选择初始化top=0;当然你也可以自由选择。

(2)入栈

void StackPush(Stack* ps, STDataType data);

void StackPush(Stack* ps, STDataType data)
{assert(ps);if (ps->top == ps->capacity)//判断空间是否满了{//空间capacity满了就需要扩容STDataType newcapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//判断是否扩容过,如果capacity为0就增加4//个单位空间,否则开辟capacity的2倍空间ps->capacity = newcapacity;//扩容后capacity要等于newcapacityps->a = (STDataType*)realloc(ps->a, newcapacity * sizeof(STDataType));if (ps->a == NULL){perror("realloc fail");return;}}ps->a[ps->top] = data;//入栈ps->top++;//栈顶+1}

这里入栈要注意判断栈的容量是否满了,满了需要使用realloc函数扩容,对于realloc函数有疑问的小伙伴可以查看土土的博客——C语言动态内存函数介绍

(3)出栈

void StackPop(Stack* ps)

// 出栈 
void StackPop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));//判断非空ps->top--;
}

出栈就比较简单,只需将top–即可,但是同时也要注意判断栈不为空哦~判空函数StackEmpty(ps)将在后面实现

(4)获取栈顶元素

STDataType StackTop(Stack* ps)

// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));//判断非空return ps->a[ps->top-1];
}

是时候考验你们的专注力了,这里返回栈顶元素用的是top-1;有小伙伴知道为什么不直接用top吗?答案我们放在下一个获取栈中有效元素个数函数中揭晓。

(5)获取栈中有效元素个数

int StackSize(Stack* ps)

// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{assert(ps);return ps->top;
}

上一个函数获取栈顶元素我们使用的是top-1,是因为在初始化函数时我们就介绍过将top初始化为0,指向栈顶元素的下一个,所以要获取栈顶元素我们要将top-1;依此类推栈中有效元素个数就恰好是top了。

(6)检测栈是否为空

bool StackEmpty(Stack* ps)

// 检测栈是否为空,如果为空返回true,如果不为空返回false
bool StackEmpty(Stack* ps)
{assert(ps);/*if (ps->top == 0)return true;elsereturn false;*/return ps->top == 0;
}

这里可以使用if语句来判断,也可以如上面代码所示直接使用return返回。

(7)销毁栈

void StackDestroy(Stack* ps)

// 销毁栈 
void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);ps->capacity = 0;ps->a = NULL;ps->top = 0;
}

这里就不过多赘述,使用free销毁即可;因为数组时地址连续的一段物理空间,所以只要数组首元素地址即可free整个数组与链表需要遍历不同。

栈实现可视化如下图所示:

在这里插入图片描述
代码如下:

#define _CRT_SECURE_NO_WARNINGS 1
#include"stack.h"
void Sttest()
{Stack ST;StackInit(&ST);StackPush(&ST, 1);StackPush(&ST, 2);StackPush(&ST, 3);StackPush(&ST, 4);while (ST.top)//打印栈{printf("%d", StackTop(&ST));StackPop(&ST);//打印一个出一个}StackDestroy(&ST);}
int main()
{Sttest();return 0;
}

二、队列

2.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)
入队列:进行插入操作的一端称为队尾
出队列:进行删除操作的一端称为队头

发现进行删除操作的都是队头,无论栈还是队列;
队列根据其名字,我们不难发现类似于我们生活中的排队,先排队的肯定会先出去;
在这里插入图片描述

2.2队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。

// 链式结构:表示队列 
typedef int QDataType;
typedef struct QListNode 
{ struct QListNode* pNext; QDataType data; 
}QNode; // 队列的结构 
typedef struct Queue 
{ 
QNode* front; 
QNode* rear; 
}Queue; 
// 初始化队列 
void QueueInit(Queue* q); 
// 队尾入队列 
void QueuePush(Queue* q, QDataType data); 
// 队头出队列 
void QueuePop(Queue* q); 
// 获取队列头部元素 
QDataType QueueFront(Queue* q); 
// 获取队列队尾元素 
QDataType QueueBack(Queue* q); 
// 获取队列中有效元素个数 
int QueueSize(Queue* q); 
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q); 
// 销毁队列 
void QueueDestroy(Queue* q);

队列相较于栈定义了两个结构体来表示,一个结构体QNode表示节点,另一个结构体Queue则用来表示队列的头尾指针,展示队列的结构。
队列也包含了初始化,队尾入队列,队头出队列,获取队列头部元素,获取队列尾部元素,以及有效元素个数,判空,销毁这八个函数。

(1)初始化队列

void QueueInit(Queue* q);

// 初始化队列 
void QueueInit(Queue* q)
{assert(q);q->front = NULL;q->rear = NULL;
}

将Queue结构体初始化即可

(2)队尾入队列

void QueuePush(Queue* q, QDataType data);

// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{assert(q);QNode* newnode = (QNode*)malloc(sizeof(QNode));//创建新节点if (newnode == NULL){perror("malloc fail");return;}newnode->data = data;newnode->pNext = NULL;//队列为空的情况入队列if (QueueEmpty(q)){q->front = newnode;q->rear = newnode;return;}//队列不为空的情况入队列else{q->rear->pNext = newnode;q->rear = newnode;return;}
}

队尾入队列首先要记得malloc一个新节点,然后要记得判断队列是否为空,分为两种情况。判空函数将在后面实现。

(3)队头出队列

void QueuePop(Queue* q);

// 队头出队列 
void QueuePop(Queue* q)
{assert(q);assert(!QueueEmpty(q));//判断队列非空QNode* tmp = q->front;//先保存队头指针q->front = tmp->pNext;free(tmp);
}

队头出队列要记得free释放出去节点的空间。

(4)获取队列头部元素

QDataType QueueFront(Queue* q);

// 获取队列头部元素 
QDataType QueueFront(Queue* q)
{assert(q);assert(!QueueEmpty(q));//判断队列非空return q->front->data;}

通过结构体Queue的front指针可以直接找到头返回即可。

(5)获取队列队尾元素

QDataType QueueBack(Queue* q);

// 获取队列队尾元素 
QDataType QueueBack(Queue* q)
{assert(q);assert(!QueueEmpty(q));//判断队列非空return q->rear->data;
}

同样通过结构体Queue的rear指针可以直接找到尾返回即可。

(6) 获取队列中有效元素个数

int QueueSize(Queue* q)

// 获取队列中有效元素个数 
int QueueSize(Queue* q)
{assert(q);assert(!QueueEmpty(q));//判断队列非空int count = 0;//记录元素个数QNode* cur = q->front;while (cur){cur = cur->pNext;count++;}return count;
}

这里队列用的是链表的结构,所以需要使用循环遍历来获取有效元素的个数。

(7)检测队列是否为空

bool QueueEmpty(Queue* q);

// 检测队列是否为空,如果为空返回true,非空返回false
bool QueueEmpty(Queue* q)
{assert(q);return q->front == NULL;}

队列头指针为空即没有元素进入队列。

(8)销毁队列

void QueueDestroy(Queue* q);

// 销毁队列 
void QueueDestroy(Queue* q)
{assert(q);while (q->front){QueuePop(q);}
}

QueuePop()函数将元素从队头删除的同时也使用了free释放空间,所以这里直接使用该函数即可。

队列实现可视化如下图所示:

在这里插入图片描述
实现代码如下:

#include"queue.h"void Qtest()
{Queue QT;QueueInit(&QT);QueuePush(&QT, 1);QueuePush(&QT, 2);QueuePush(&QT, 3);QueuePush(&QT, 4);while (QT.front){printf("%d", QueueFront(&QT));QueuePop(&QT);}QueueDestroy(&QT);
}
int main()
{Qtest();return 0;
}

三、练习题

1.一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出
栈的顺序是(  )。
A 12345ABCDEB EDCBA54321C ABCDE12345D 54321EDCBA2.若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是()
A 1,4,3,2B 2,3,4,1C 3,1,4,2D 3,4,2,13.以下(  )不是队列的基本运算?
A 从队尾插入一个新元素
B 从队列中删除第i个元素
C 判断一个队列是否为空
D 读取队头元素的值

答案:BCB

四、结语

栈和队列有很多的相似之处,尽管栈是队头进入删除数据(后进先出),队列是队尾入数据,队头删数据(先进后出),但其本质是一样的。熟悉了栈和队列后,相信大家对于顺序表和链表的理解也会更上一层楼。以上就是栈和队列的学习啦~ 完结撒花~🥳🥳🎉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/270342.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript实现点击鼠标弹钢琴的效果

思路&#xff1a; 图片设置宽900px&#xff0c;找到鼠标按下时的x坐标和img距离body的x坐标&#xff0c;两个值相减&#xff0c;然后除100取整&#xff0c;赋值给a&#xff0c;通过判断a的值来确定放出那个音乐。 完整代码&#xff1a; <!DOCTYPE html> <html lan…

YOLOv9独家原创改进|使用HWD:Haar小波下采样模块

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、论文简介 最大池化或跨步卷积等下采样操作在卷积神经网络&#xff08;CNNs&#xff09;中广泛使用&#xff0c;以聚合局部特征&#xff0c;扩大感…

Cobalt Strike 4.9.1(已更新,文章图片没换)

Cobalt Strike 4.9.1 1. 工具介绍1.1. 工具添加1.2. 工具获取 2. 工具使用2.1. 添加权限并运行2.2. 连接服务端2.3. 连接成功 3. 安全性自查 1. 工具介绍 CS 是Cobalt Strike的简称&#xff0c;是一款渗透测试神器&#xff0c;常被业界人称为CS神器。Cobalt Strike已经不再使用…

用ChatGPT计算植被归一化指数NDVI并出图的详细教程

用ChatGPT结合GIS计算植被归一化指数NDVI出图教程 用ENVI计算比较繁琐&#xff0c;如今AI的盛行&#xff0c;我们可以轻松解决计算问题&#xff0c;只需1一分钟变可以出图。 详细教学请看上方视频步骤。 更多ChatGPT教学内容请见&#xff1a;ChatGPT结合GIS&#xff1a;一分钟…

SpringBoot+Mybatis-plus+shardingsphere实现分库分表

SpringBootMybatis-plusshardingsphere实现分库分表 文章目录 SpringBootMybatis-plusshardingsphere实现分库分表介绍引入依赖yaml配置DDL准备数据库ds0数据库ds1 entitycotrollerserviceMapper启动类测试添加修改查询删除 总结 介绍 实现亿级数据量分库分表的项目是一个挑战…

C++之获取Windows系统信息

目录 1. 操作系统版本 2. 获取CPU信息 3. 获取内存信息 4. 获取硬盘信息 5.获取网络接口信息 6.获取计算机名称、用户名 在C中&#xff0c;你可以使用Windows API函数来获取Windows系统的各种信息。以下是一些常见的API函数和示例代码&#xff0c;用于获取Windows系统信息…

Nerf原理理解

神经辐射场是一个简单的全连接网络&#xff08;权重约为 5MB&#xff09;&#xff0c;经过训练可使用渲染损失再现单个场景的输入视图。该网络直接从空间位置和观看方向&#xff08;5D 输入&#xff09;映射到颜色和不透明度&#xff08;4D 输出&#xff09;&#xff0c;充当“…

【Kafka系列 06】Kafka Producer源码解析

温馨提示&#xff1a;本文基于 Kafka 2.3.1 版本。 一、Kafka Producer 原理图 生产者的 API 使用还是比较简单&#xff0c;创建一个 ProducerRecord 对象&#xff08;这个对象包含目标主题和要发送的内容&#xff0c;当然还可以指定键以及分区&#xff09;&#xff0c;然后调…

全方位碾压chatGPT4的全球最强模型Claude 3发布!速通指南在此!保姆级教学拿脚都能学会!

&#x1f389;&#x1f389;欢迎光临&#xff0c;终于等到你啦&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;持续更新的专栏《Spring 狂野之旅&#xff1a;从入门到入魔》 &a…

李沐动手学习深度学习——3.5练习

减少batch_size&#xff08;如减少到1&#xff09;是否会影响读取性能&#xff1f; 肯定会影响&#xff0c;计算机io性能而言&#xff0c;随着batch_size增大&#xff0c;读取越来越快&#xff0c;需要的时间越少。这里会涉及到计算机操作系统的知识点&#xff0c;内存与硬盘之…

第五节 JDBC驱动程序类型

JDBC驱动程序是什么&#xff1f; JDBC驱动程序在JDBC API中实现定义的接口&#xff0c;用于与数据库服务器进行交互。 例如&#xff0c;使用JDBC驱动程序&#xff0c;可以通过发送SQL或数据库命令&#xff0c;然后使用Java接收结果来打开数据库连接并与数据库进行交互。 JDK…

【2024】vue-router和pinia的配置使用

目录 vue-routerpiniavue-routerpinia进阶用法---动态路由 有同学在项目初始化后没有下载vue-router和pinia&#xff0c;下面开始&#xff1a; vue-router npm install vue-router然后在src目录下创建文件夹router&#xff0c;以及下面的index.ts文件&#xff1a; 写进下面的…

华为智慧教室3.0的晨光,点亮教育智能化变革

“教室外有更大的世界&#xff0c;但世界上没有比教室更伟大的地方。” 我们在求学阶段&#xff0c;都听说过这句话&#xff0c;但往往是在走出校园之后&#xff0c;才真正理解了这句话。为了让走出校园的孩子能够有能力&#xff0c;有勇气探索广阔的世界。我们应该准备最好的教…

碳视野|全国首个ESG区域行动方案通过,上海政府推进ESG有八“要”

引领绿色转型&#xff0c;共筑低碳未来&#xff01;AMT企源碳管理团队深入解读碳领域政策、概念及标准&#xff0c;分享实践经验&#xff0c;助力产业绿色发展。我们启动“碳视野、碳课堂、碳实践”三大专栏&#xff0c;紧跟碳行业政策动态&#xff0c;以“科普实践分享”为核心…

Javaweb之SpringBootWeb案例之自动配置案例的自定义starter测试的详细解析

3.2.4.3 自定义starter测试 阿里云OSS的starter我们刚才已经定义好了&#xff0c;接下来我们就来做一个测试。 今天的课程资料当中&#xff0c;提供了一个自定义starter的测试工程。我们直接打开文件夹&#xff0c;里面有一个测试工程。测试工程就是springboot-autoconfigurat…

C++ Floyd求最短路 Floyd算法(多源汇最短路)

给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c;边权可能为负数。 再给定 k 个询问&#xff0c;每个询问包含两个整数 x 和 y &#xff0c;表示查询从点 x 到点 y 的最短距离&#xff0c;如果路径不存在&#xff0c;则输出 impossible。 数据…

过于老旧的pytorch_ssim包 请从github下载源码

有些冷门算法真的不要随便pip&#xff0c;有可能下载到史前版本…最好还是找源代码 汗 今天要用到SSIM损失函数&#xff0c;从网上简单看了一下原理就想测试一下&#xff0c;偷了一下懒就直接在命令行输入pip install pytorch_ssim了&#xff0c;结果报了一堆错误&#xff08;汗…

Python(NetOps)前传-网络设备开局配置

背景 我们知道用Python在cli配置网络设备的前提是&#xff1a; 网络设备与Python主机网络可达网络设备已开启并完成ssh相关配置 目标 本文已华为S5720S-52P-LI-AC交换机为例&#xff0c;完成&#xff1a; 完成网络设备开局配置&#xff1b;用Python脚本验证ssh登录 配置 …

人人都写过的6个bug

大家好&#xff0c;我是知微。 程序员写bug几乎是家常便饭&#xff0c;也是我们每个人成长过程中难以避免的一部分。 为了缓解这份“尴尬”&#xff0c;今天想和大家分享一些曾经都会遇到过的bug&#xff0c;让我们一起来看看这些“经典之作”。 1、数组越界 #include <…

【单片机学习的准备】

文章目录 前言一、找一个视频是二、画图软件三、装keil5 仿真protues总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 项目需要&#xff1a; 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、找一个视频是 https://www.b…