训练验证码之ddddocr一个图文视频教学

目录

      • 一、推荐文章视频
      • 一、ddddocr环境配置
      • 二、字符集验证码训练
      • 三、ocr_api_server服务搭建

一、推荐文章视频

  • 文章原文来自这里:训练验证码-4、ddddocr训练字符验证码 , 原文文章末尾有视频介绍
  • 更多内容见训练验证码合集

一、ddddocr环境配置

1.打开ddddocr项目 https://github.com/sml2h3/dddd_trainer 进行下载压缩包并解压,文章末尾是视频介绍,如果文字有些不清楚,可以看视频操作
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

fire
loguru
pyyaml
tqdm
numpy
pillow==9.5.0
onnx
ddddocr-py311

5.创建ddddocr训练专属的虚拟环境,注意这里我安装的pytorch版本对应,请看上面文章找自己cuda对应的torch版本安装(该篇文章 深度学习环境安装 目录三),依次执行如下命令

  • conda create -n dd python=3.11
  • conda activate dd
  • pip install -r requirements.txt
  • N卡gpu训练:conda install pytorch2.0.1 torchvision0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c nvidia
  • 只cpu训练:conda install pytorch2.0.1 torchvision0.15.2 torchaudio==2.0.2 cpuonly
    在这里插入图片描述
    6.可以训练字母/数字/汉字/定长/不定长/大小写/乘号加减号等,报错解决推荐文章 https://blog.csdn.net/weixin_68123638/article/details/131463026

二、字符集验证码训练

1.创建训练项目:python app.py create charprj , 如图这时候在dddd_trainer/projects下会自动生成一个charprj的文件夹,并且包含三个空文件夹cache、checkpoints、models 和一个config.yaml配置文件
在这里插入图片描述
2.准备数据集:听说至少需要1200张图片(不确定), 如图我在D:\Yzmtrain\images_char 目录下面放了一些数据集,这些数据集的命名,名称_随机hash值
在这里插入图片描述
3.如果是单个汉字的话,python app.py create charprj --single , 如果想要创建一个CNN的项目,则可以加上–single参数,CNN项目识别比如图片类是什么分类的情况,比如图片上只有一个字,识别这张图是什么字(图上有多个字的不要用CNN模式),又比如分辨图片里是狮子还是兔子用CNN模式比较合适,大多数OCR需求请不要使用–single
在这里插入图片描述
3.缓存数据配置:python app.py cache charprj D:\Yzmtrain\images_char ,dddd_trainer/cache文件夹下会生成两个文件cache.train.tmp和cache.val.tmp,里面记录的就是images文件夹下面的图片信息
在这里插入图片描述

Model:CharSet: []     # 字符集,不要动,会自动生成ImageChannel: 1 # 图片通道数,如果你想以灰度图进行训练,则设置为1,彩图,则设置为3。如果设置为1,数据集是彩图,项目会在训练的过程中自动在内存中将读取到的彩图转为灰度图,并不需要提前自己修改并且该设置不会修改本地图片ImageHeight: 64 # 图片自动缩放后的高度,单位为px,高度必须为16的倍数,会自动缩放图像ImageWidth: -1  # 图片自动缩放后的宽度,单位为px,本项若设置为-1,将自动根据情况调整Word: false     # 是否为CNN模型,这里在创建项目的时候通过参数控制,不要自己修改
System:Allow_Ext: [jpg, jpeg, png, bmp]  # 支持的图片后缀,不满足的图片将会被自动忽略GPU: true                         # 是否启用GPU去训练,使用GPU训练需要参考步骤一安装好环境GPU_ID: 0                         # GPU设备号,0为第一张显卡Path: ''                          # 数据集根目录,在缓存图片步骤会自动生成,不需要自己改,除非数据集地址改了Project: test                     # 项目名称 也就是{project_name}Val: 0.03                         # 验证集的数据量比例,0.03就是3%,在缓存数据时,会自动选则3%的图片用作训练过程中的数据验证,修改本值之后需要重新缓存数据
Train:BATCH_SIZE: 32                                    # 训练时每一个batch_size的大小,主要取决于你的显存或内存大小,可以根据自己的情况,多测试,一般为16的倍数,如16,32,64,128CNN: {NAME: ddddocr}                              # 特征提取的模型,目前支持的值为ddddocr,effnetv2_l,effnetv2_m,effnetv2_xl,effnetv2_s,mobilenetv2,mobilenetv3_s,mobilenetv3_lDROPOUT: 0.3                                      # 非专业人员不要动LR: 0.01                                          # 初始学习率OPTIMIZER: SGD                                    # 优化器,不要动SAVE_CHECKPOINTS_STEP: 2000                       # 每多少step保存一次模型TARGET: {Accuracy: 0.97, Cost: 0.05, Epoch: 20}   # 训练结束的目标,同时满足时自动结束训练并保存onnx模型,Accuracy为需要满足的最小准确率,Cost为需要满足的最小损失,Epoch为需要满足的最小训练轮数TEST_BATCH_SIZE: 32                               # 测试时每一个batch_size的大小,主要取决于你的显存或内存大小,可以根据自己的情况,多测试,一般为16的倍数,如16,32,64,128TEST_STEP: 1000                                   # 每多少step进行一次测试

4.训练或者恢复训练:python app.py train charprj
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import ddddocrocr = ddddocr.DdddOcr(det=False, ocr=False, show_ad=False, import_onnx_path="charprj_1.0_23_6000_2023-10-26-23-47-08.onnx", charsets_path="charsets.json")with open(r"D:\Yzmtrain\img_other\1CBH_1578451419953.png", 'rb') as f:image_bytes = f.read()print(ocr.classification(image_bytes))

三、ocr_api_server服务搭建

1.服务搭建详细内容看这个吧,本文不介绍https://github.com/sml2h3/ocr_api_server
2、更多内容见训练验证码合集
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/272457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS直接量及其相关对象

什么是直接量 直接量是指不需要创建对象就可以直接使用的变量。ES中的直接量主要有三种类型:表示字符串的string类型、表示数字的number类型和表示true/false的boolean类型。当我们直接将值赋给变量后,ES就会自动判断其类型,而且当参数发生变…

2024 ssh连接linux ,包括连接被拒的解决方案

这里以windows系统 连接 linux(centOS)为例: 一、如果windows 连接时出现: Permission denied, please try again. 连接被拒绝,做出以下修改: 打开linux - Terminal 输入:cat /etc/ssh/sshd_c…

Canvas笔记05:绘制文本,可视化图表中最常用

hello,我是贝格前端工场,最近在学习canvas,分享一些canvas的一些知识点笔记,本期分享canvas绘制文本的知识,欢迎老铁们一同学习,欢迎关注,如有前端项目可以私信贝格。 Canvas绘制文本是指使用H…

TI IWR6843ISK ROS驱动程序搭建

1、设备准备 1.1 硬件设备 1)TI IWR 6843 ISK 1块 2)Micro USB 数据线 1条 1.2 系统环境 1)VMware Workstation 15 Player 虚拟机 2)Ubuntu18.04 并安装有 ROS1 系统 如若没有安装 ROS 系统,可通过如下指令进行…

解决方案TypeError: string indices must be integers

文章目录 一、现象:二、解决方案 一、现象: PyTorch深度学习框架,运行bert-mini,本地环境是torch1.4-gpu,发现报错显示:TypeError: string indices must be integers 后面报字符问题,百度过找…

ButterKnife实现之Android注解处理器使用教程

ButterKnife实现之Android注解处理器使用教程 1、新建一个注解 1.1、编译时注解 创建注解所需的元注解Retention包含3个不同的值,RetentionPolicy.SOURCE、RetentionPolicy.CLASS、RetentionPolicy.RUNTIME。这3个值代表注解不同的保留策略。 使用RetentionPolic…

flink重温笔记(十三): flink 高级特性和新特性(2)——ProcessFunction API 和 双流 join

Flink学习笔记 前言:今天是学习 flink 的第 13 天啦!学习了 flink 高级特性和新特性之ProcessFunction API 和 双流 join,主要是解决大数据领域数据从数据增量聚合的问题,以及快速变化中的流数据拉宽问题,即变化中多个…

idea连接远程服务器

1. 双击shift,出现如下界面 2. 远程连接 原文来自这个up主的,点击蓝色字体就可以跳转啦! 输入主机ip、用户名、密码,点击Test Connection验证,最后点击ok添加成功 有用的话记得给俺点个赞,靴靴~

出现身份验证错误,无法连接到本地安全机构 顺利解决这个问题希望能帮助大家

出现身份验证错误,无法连接到本地安全机构,远程计算机:XX,这可能是由于密码过期,如果密码已过期请更新密码。 我们可以在系统属性中对远程进行设置,以解决远程桌面无法连接到本地安全机构这一问题。 步骤…

AndroidStudio跑马灯实现

在activity_main.xml中编写如下代码&#xff1a; <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_h…

如何配置IDEA中的JavaWeb环境(2023最新版)

创建项目 中文版&#xff1a;【文件】-【新建】-【项目】 点击【新建项目】&#xff0c;改好【名称】点击【创建】 右键自己建立的项目-【添加框架支持】&#xff08;英文版是Add Framework Support...&#xff09; 勾选【Web应用程序】-【确定】 配置tomcat 点击编辑配置 点…

保姆级讲解字符串函数(上篇)

目录 字符分类函数 导图 函数介绍 1.getchar 2. isupper 和 islower 字符转换函数&#xff1a;&#xff08;toupper , tolower&#xff09; 与 putchar 字符串函数 导图 string函数的使用和模拟实现 string的使用 求字符串长度 字符串的比较 string函数的模拟实现…

基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 假设一个收集轨道&#xff0c;上面有5个采集堆&#xff0c;这5个采集堆分别被看作一个4*20的矩阵&#xff08;下面只有4*10&#xff09;&#xff0c;每个模块&…

Java多线程学习的关键要点和常见案例总结

文章目录 Java多线程学习的关键要点&#xff1a;案例示例&#xff1a; Java多线程编程还包括更多的高级特性和实用技巧高级主题&#xff1a;实用案例&#xff1a;线程池的高级用法和配置&#xff1a;线程安全的最佳实践&#xff1a; Java多线程学习的关键要点和常见案例总结如下…

防患未然,OceanBase巡检工具应用实践——《OceanBase诊断系列》之五

1. OceanBase为什么要做巡检功能 尽管OceanBase拥有很好的MySQL兼容性&#xff0c;但在长期的生产环境中&#xff0c;部署不符合标准规范、硬件支持异常&#xff0c;或配置项错误等问题&#xff0c;这些短期不会出现的问题&#xff0c;仍会对数据库集群构成潜在的巨大风险。为…

血泪教训双非计算机考研避坑指南

记住&#xff0c;考研不是要考多少分&#xff0c;而是要上岸&#xff0c;上岸&#xff0c;上岸&#xff01;&#xff01;&#x1f621; 一、坏、渣、难、险&#xff0c;一律打咩 坏: 歧视本科院校‼️ 这个就不用多说了&#xff0c;你明明付出了大于等于别人的努力&#xff0c;…

猫头虎分享已解决Bug || 数据中心断电:PowerLoss, DataCenterBlackout

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

运维打工人,兼职跑外卖的第二个周末

北京&#xff0c;晴&#xff0c;西南风1级。 前序 今天天气还行&#xff0c;赶紧起来&#xff0c;把衣服都洗洗&#xff0c;准备准备&#xff0c;去田老师吃饭早饭了。 一个甜饼、一个茶叶蛋、3元自助粥花费7.5。5个5挺吉利的。 跑外卖的意义 两个字减肥&#xff0c;记录刚入…

JavaWeb03-HTTP协议,Tomcat,Servlet

目录 一、HTTP协议 1.概述 2.特点 3.请求数据格式 &#xff08;1&#xff09;请求行 &#xff08;2&#xff09;请求头 &#xff08;3&#xff09;请求体 &#xff08;4&#xff09;常见请求头 &#xff08;5&#xff09;GET和POST请求区别 4.响应数据格式 &#xf…

分销商城微信小程序:用户粘性增强,促进复购率提升

在数字化浪潮的推动下&#xff0c;微信小程序作为一种轻便、高效的移动应用形式&#xff0c;正成为越来越多企业开展电商业务的重要平台。而分销商城微信小程序的出现&#xff0c;更是为企业带来了前所未有的机遇。通过分销商城微信小程序&#xff0c;企业不仅能够拓宽销售渠道…