【Linux】第四十二站:线程局部存储与线程分离

一、线程的局部存储

1.实现多线程

如果我们想创建多线程,我们可以用下面的代码类似去实现

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
using namespace std;
#define NUM 10struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{threadData *td = static_cast<threadData*>(args);int i = 0;while(i < 10){cout << "pid: " << getpid() << ", tid : " << toHex(pthread_self()) << ", threadname : " << td->threadname << endl;sleep(1);i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);sleep(1);}for(int i = 0; i < tids.size(); i++){pthread_join(tids[i], nullptr);}return 0;
}

运行结果如下图所示

image-20240229203441892

在这里我们就发现了一个问题:

所有的线程,执行的都是这个函数

一旦一个线程修改了数据,其他线程看到这个数据都会被修改


2.线程有独立的栈结构

当代码如下的时候

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
using namespace std;
#define NUM 3struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{int test_i = 0;threadData *td = static_cast<threadData*>(args);int i = 0;while(i < 10){cout << "pid: " << getpid() << ", tid : " << toHex(pthread_self()) << ", threadname : " << td->threadname << ", test_i: " << test_i << ", &test_i: " << toHex((pthread_t)&test_i) << endl;sleep(1);i++;test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);sleep(1);}for(int i = 0; i < tids.size(); i++){pthread_join(tids[i], nullptr);}return 0;
}

运行结果为:

image-20240229204957681

我们可以看到每一个线程的test_i都会独立的增长,并且每个test_i的地址都不一样

这是因为每一个线程都会有自己独立的栈结构。


3.线程之间没有秘密

那么如果我们主线程就想要访问上面线程1的变量,我们可以做到吗?当然可以做到,因为它也在同一个地址空间中。

就比如下面的代码就可以实现主线程访问线程2的变量

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
using namespace std;
#define NUM 3int *p = NULL;struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{int test_i = 0;threadData *td = static_cast<threadData*>(args);if(td->threadname == "thread-2"){p = &test_i;}int i = 0;while(i < 10){cout << "pid: " << getpid() << ", tid : " << toHex(pthread_self()) << ", threadname : " << td->threadname << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;sleep(1);i++;test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);}sleep(1); //确保复制成功cout << "main thread get a thread local value, val: " << *p << ", &val: " << p << endl;   for(int i = 0; i < tids.size(); i++){pthread_join(tids[i], nullptr);}return 0;
}

运行结果为:

image-20240229211018969

所以其实在线程和线程当中没有秘密,只不过我们要求每一个线程有自己独立的栈,但是他们还在通一个地址空间中,线程的栈上的数据,也是可以被其他线程看到并且访问的。如果我们一个线程想要访问另一个线程的值,当然可以访问,只不过我们平时禁止这样做。


4.线程的局部存储

如下所示,代码是多线程访问同一个变量的代码

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
using namespace std;
#define NUM 3//int *p = NULL;int g_val = 100;struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{//int test_i = 0;threadData *td = static_cast<threadData*>(args);// if(td->threadname == "thread-2")// {//     p = &test_i;// }int i = 0;while(i < 10){cout << "pid: " << getpid() << ", tid : " << toHex(pthread_self()) << ", threadname : " << td->threadname << ", g_val: " << g_val << ", &g_val: " << &g_val << endl; // << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;sleep(1);i++;g_val++;//  test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);}sleep(1); //确保复制成功// cout << "main thread get a thread local value, val: " << *p << ", &val: " << p << endl;   for(int i = 0; i < tids.size(); i++){pthread_join(tids[i], nullptr);}return 0;
}

运行结果为:

image-20240229212555074

所以全局变量是被所有的线程看到并同时访问的。

这个g_val就是共享资源。


但是如果一个线程想要一个私有的全局变量呢?

所以我们可以下面这样做:在全局变量之前加上**__thread**

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
using namespace std;
#define NUM 3//int *p = NULL;__thread int g_val = 100;struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{//int test_i = 0;threadData *td = static_cast<threadData*>(args);// if(td->threadname == "thread-2")// {//     p = &test_i;// }int i = 0;while(i < 10){cout << "pid: " << getpid() << ", tid : " << toHex(pthread_self()) << ", threadname : " << td->threadname << ", g_val: " << g_val << ", &g_val: " << &g_val << endl; // << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;sleep(1);i++;g_val++;//  test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);}sleep(1); //确保复制成功// cout << "main thread get a thread local value, val: " << *p << ", &val: " << p << endl;   for(int i = 0; i < tids.size(); i++){pthread_join(tids[i], nullptr);}return 0;
}

运行结果为

image-20240229213247688

这样的对一个变量加上__thread的,我们将这个称作线程的局部存储

而我们前面正好就说了:在线程的tcb中,就有一个线程的局部存储

image-20240229213409277

所以我们可以明显看到,这个变量应该就在动态库中存储着。

这个__thread其实就是编译器编译时候的一个默认选项

我们也可以直接从前面的两个图中的地址可以看出,没加这个选项的地址比较小(在静态区),加上这个选项地址比较大(处于堆栈之间的共享区)。

注意:这个__thread选项只能定义内置类型,不能用来修饰自定义类型

有了这个选项,对于某些只属于这个线程的变量,我们可以使用这个__thread来进行修饰,让它变为局部存储。这样的好处是可以不用频繁的去调用某些系统调用接口。

image-20240229214128231

这样就实现了线程级别的全局变量,和其他线程互不干扰。

二、分离线程

  • 默认情况下,新创建的线程是joinable的,线程退出后,需要对其进行pthread_join操作,否则无法释放资源,从而造成系统泄漏。
  • 如果不关心线程的返回值,join是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源
#include <pthread.h>
int pthread_detach(pthread_t thread);
//Compile and link with -pthread.

这个分离接口既可以由主线程来做,也可以由其他新线程来做


我们可以先在join前先分离一下,看看是什么结果

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
#include <cstring>
#include <cstdio>
using namespace std;
#define NUM 3//int *p = NULL;__thread int g_val = 100;
__thread int number = 0;
struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{//int test_i = 0;threadData *td = static_cast<threadData*>(args);number = pthread_self();// if(td->threadname == "thread-2")// {//     p = &test_i;// }int i = 0;while(i < 10){//cout << "number: " << number << ", pid: " << getpid() << endl;printf("number: 0x%x, pid: %d\n", number, getpid());//cout << "pid: " << getpid() << ", tid : " << toHex(number) << ", threadname : " << td->threadname << ", g_val: " << g_val << ", &g_val: " << &g_val << endl;         // << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;sleep(1);i++;g_val++;//  test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);}usleep(100000); //确保复制成功// cout << "main thread get a thread local value, val: " << *p << ", &val: " << p << endl;   for(auto i : tids){pthread_detach(i);}for(int i = 0; i < tids.size(); i++){int n = pthread_join(tids[i], nullptr);printf("n = %d, who = 0x%x, why: %s\n", n , tids[i], strerror(n));}return 0;
}

运行结果为:

image-20240301162551454

可见我们将线程给detach以后,再去join就不会成功了


我们也可以线程自己把自己分离掉

#include <iostream>
#include <pthread.h>
#include <string>
#include <cstdlib>
#include <unistd.h>
#include <thread>
#include <vector>
#include <cstring>
#include <cstdio>
using namespace std;
#define NUM 3//int *p = NULL;__thread int g_val = 100;
__thread int number = 0;
struct threadData
{string threadname;
};
string toHex(pthread_t tid)
{char buffer[128];snprintf(buffer, sizeof(buffer), "0x%x", tid);return buffer;
}
void* threadRoutine(void* args)
{pthread_detach(pthread_self());//int test_i = 0;threadData *td = static_cast<threadData*>(args);number = pthread_self();// if(td->threadname == "thread-2")// {//     p = &test_i;// }int i = 0;while(i < 10){//cout << "number: " << number << ", pid: " << getpid() << endl;printf("number: 0x%x, pid: %d\n", number, getpid());//cout << "pid: " << getpid() << ", tid : " << toHex(number) << ", threadname : " << td->threadname << ", g_val: " << g_val << ", &g_val: " << &g_val << endl;         // << ", test_i: " << test_i << ", &test_i: " << &test_i << endl;sleep(1);i++;g_val++;//  test_i++;}delete td;return nullptr;
}void InitThreadData(threadData* td, int number)
{td->threadname = "thread-" + to_string(number); 
}int main()
{vector<pthread_t> tids;for(int i = 0; i < NUM; i++){//注意这种方式不可以,因为都在主线程的栈中定义的变量。一旦for循环每循环一次//td也要随之销毁掉。这里传入的全部都是野指针了。// threadData td;// td.threadname = "";// td.tid = "";pthread_t tid;threadData *td = new threadData;InitThreadData(td, i);pthread_create(&tid, nullptr, threadRoutine, td);tids.push_back(tid);}usleep(100000); //确保复制成功// cout << "main thread get a thread local value, val: " << *p << ", &val: " << p << endl;   // for(auto i : tids)// {//     pthread_detach(i);// }for(int i = 0; i < tids.size(); i++) {int n = pthread_join(tids[i], nullptr);printf("n = %d, who = 0x%x, why: %s\n", n , tids[i], strerror(n));}return 0;
}

运行结果也是一样的

image-20240301162921478

当线程内部的函数结束之后,会自动释放掉线程的资源


我们上面两个例子会发现一个问题,那就是分离线程应该会在线程跑完之后进行回收的。但是为什么还没有跑完就被回收了呢。这是因为我们在下面就有一个join,去等待了线程了。它在等待的发现已经被分离了。就不是阻塞式的等了,立马就出错返回了。出错返回后,这个for循环立刻就跑完了,跑完之后,主线成结束了,所以进程就结束了。所以虽然上面的线程还没有跑完,但是进程已经结束了,这些资源也就被释放了。

这里也告诉我们,即便我们的主线程将线程分离了,不用等待了,但是我们还是要自己去确保主线程是最后退出的,否则会出现一些问题。

所以线程是否被分离其实就是一个属性状态。它一定是要被存储的。所以线程分离其实就是将这个属性进行了修改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/273574.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】进阶学习:详细解析Sklearn中的MinMaxScaler---原理、应用、源码与注意事项

【机器学习】进阶学习&#xff1a;详细解析Sklearn中的MinMaxScaler—原理、应用、源码与注意事项 这篇文章的质量分达到了97分&#xff0c;虽然满分是100分&#xff0c;但已经相当接近完美了。请您耐心阅读&#xff0c;我相信您一定能从中获得不少宝贵的收获和启发~ &#x1f…

PromptBreeder---针对特定领域演化和发展提示词的方法

原文地址&#xff1a;promptbreeder-evolves-adapts-prompts-for-a-given-domain 论文地址&#xff1a;https://arxiv.org/pdf/2309.16797.pdf 2023 年 10 月 6 日 提示方法分为两大类 硬提示是由人工精心设计的文本提示&#xff0c;包含离散的输入令牌&#xff1b;其缺点…

如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一下么?

目录 一、面试官心理分析 二、面试题剖析 1.Redis 主从架构 2.Redis replication 的核心机制 3.Redis 主从复制的核心原理 4.主从复制的断点续传 5.无磁盘化复制 6.过期 key 处理 7.复制的完整流程 8.全量复制 9.增量复制 10.heartbeat 11.异步复制 12.Redis 如何…

鸿蒙OS应用开发之显示图片组件11

前面学习了像素降级处理的方法,这样方便一个图片可以显示在不同大小屏幕的技术,同样不会失真。现在来学习另外一个重要的技术,就是图片处理。图片处理是一个很范的名词,一般来说图片处理都会采用预处理的方法,比如在电脑上采用图形处理软件进行处理,然后再使用到手机的软…

校园小情书微信小程序,社区小程序前后端开源,校园表白墙交友小程序

功能 表白墙卖舍友步数旅行步数排行榜情侣脸漫画脸个人主页私信站内消息今日话题评论点赞收藏 效果图

JS实现chatgpt数据流式回复效果

最近高了一个简单chatgpt对话功功能&#xff0c;回复时希望流式回复&#xff0c;而不是直接显示结果&#xff0c;其实很简单&#xff0c;前端流式读取即可&#xff0c;后端SSE实现流式传输 前端用到fetch获取数据&#xff0c;然后利用reader读取 let requestId parseInt(Ma…

章六、集合(1)—— 概念、API、List 接口及实现类、集合迭代

零、 关闭IDEA调试时自动隐藏空元素 一、 集合的概念 存储一个班学员信息&#xff0c;假定一个班容纳20名学员 当我们需要保存一组一样&#xff08;类型相同&#xff09;的元素的时候&#xff0c;我们应该使用一个容器来存储&#xff0c;数组就是这样一个容器。 数组有什么缺…

CentOS7 利用remi yum源安装php8.1

目录 前言remi yum源remi yum源 支持的操作系统remi yum源 支持的php版本 安装epel源安装remi源安装 php8.1查看php版本查看php-fpm服务启动php-fpm服务查看php-fpm服务运行状态查看php-fpm服务占用的端口查看 php8.1 相关的应用 前言 CentOS Linux release 7.9.2009 (Core) …

GO语言接入支付宝

GO语言接入支付宝 今天就go语言接入支付宝写一个教程 使用如下库&#xff0c;各种接口较为齐全 "github.com/smartwalle/alipay/v3"先简单介绍下加密&#xff1a; 试想&#xff0c;当用户向支付宝付款时&#xff0c;若不进行任何加密&#xff0c;那么黑客就可以任…

机器学习——感知机模型

机器学习系列文章 入门必读:机器学习介绍 文章目录 机器学习系列文章前言1. 感知机1.1 感知机定义1.2 感知机学习策略2. 代码实现2.1 构建数据2.2 编写函数2.3 迭代3. 总结前言 大家好,大家好✨,这里是bio🦖。这次为大家带来的是感知机模型。下面跟我一起来了解感知机模…

uniapp:小程序数字键盘功能样式实现

代码如下&#xff1a; <template><view><view><view class"money-input"><view class"input-container" click"toggleBox"><view class"input-wrapper"><view class"input-iconone"…

交流负载箱的特点和优势有哪些?

交流负载箱广泛应用于电力系统、新能源、轨道交通、航空航天等领域。它具有以下特点和优势&#xff1a; 1. 灵活性高&#xff1a;交流负载箱可以根据实际需求&#xff0c;调整输出电流、电压、功率等参数&#xff0c;以满足不同场景下的测试需求。同时&#xff0c;它还可以实现…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《含海上风电制氢的综合能源系统分布鲁棒低碳优化运行》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

一文读懂私网解析 PrivateZone

越来越多的企业认同&#xff0c;多云和混合云是实现数字化变革的必由之路。Cisco 发布的《2022 Global Hybrid Cloud Trends Report》显示&#xff0c; 82% 的受访者使用混合多云架构来支撑其应用程序。混合云架构下&#xff0c;如何灵活、可靠且低成本地满足各种场景 DNS 的解…

CVE-2024-25600 WordPress Bricks Builder RCE-漏洞分析研究

本次代码审计项目为PHP语言&#xff0c;我将继续以漏洞挖掘者的视角来分析漏洞的产生&#xff0c;调用与利用..... 前方高能&#xff0c;小伙伴们要真正仔细看咯..... 漏洞简介 CVE-2024-25600 是一个严重的&#xff08;CVSS 评分 9.8&#xff09;远程代码执行 (RCE) 漏洞&am…

linux网络通信(TCP)

TCP通信 1.socket----->第一个socket 失败-1&#xff0c;错误码 参数类型很多&#xff0c;man查看 2.connect 由于s_addr需要一个32位的数&#xff0c;使用下面函数将点分十进制字符串ip地址以网络字节序转换成32字节数值 同理端口号也有一个转换函数 我们的端口号位两个字…

大屏适配pad包括大屏上的弹框

1.效果 横屏 2.竖屏效果 代码部分 <template><div class"tz_drive_wrapper" id"contain"><div class"tz_drive_header"><page-header></page-header><div class"tz_drive-time">通州区住房…

Android Studio Iguana | 2023.2.1版本

Android Gradle 插件和 Android Studio 兼容性 Android Studio 构建系统基于 Gradle&#xff0c;并且 Android Gradle 插件 (AGP) 添加了一些特定于构建 Android 应用程序的功能。下表列出了每个版本的 Android Studio 所需的 AGP 版本。 如果特定版本的 Android Studio 不支持…

校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序

项目描述&#xff1a; 校园小情书微信小程序源码 | 社区小程序前后端开源 | 校园表白墙交友小程序 功能介绍&#xff1a; 表白墙 卖舍友 步数旅行 步数排行榜 情侣脸 漫画脸 个人主页 私信 站内消息 今日话题 评论点赞收藏 服务器环境要求&#xff1a;PHP7.0 MySQL5.7 效果…

c++ primer plus 笔记 第十六章 string类和标准模板库

string类 string自动调整大小的功能&#xff1a; string字符串是怎么占用内存空间的&#xff1f; 前景&#xff1a; 如果只给string字符串分配string字符串大小的空间&#xff0c;当一个string字符串附加到另一个string字符串上&#xff0c;这个string字符串是以占用…