从0开始回顾MySQL---事务四大特性

事务概述

  1. 事务是一个最小的工作单元。在数据库当中,事务表示一件完整的事儿。
  2. 一个业务的完成可能需要多条DML语句共同配合才能完成,例如转账业务,需要执行两条DML语句,先更新张三账户的余额,再更新李四账户的余额,为了保证转账业务不出现问题,就必须保证要么同时成功,要么同时失败,怎么保证同时成功或者同时失败呢?就需要使用事务机制。
  3. 也就是说用了事务机制之后,在同一个事务当中,多条DML语句会同时成功,或者同时失败,不会出现一部分成功,一部分失败的现象。
  4. 事务只针对DML语句有效:因为只有这三个语句是改变表中数据的。
    1. insert
    2. delete
    3. update

事务四大特性:ACID

  1. 原子性(Atomicity):是指事务包含的所有操作要么全部成功,要么同时失败。
  2. 一致性(Consistency):是指事务开始前,和事务完成后,数据应该是一致的。例如张三和李四的钱加起来是5000,中间不管进行过多少次的转账操作(update),总量5000是不会变的。这就是事务的一致性。
  3. 隔离性(Isolation):隔离性是当多个⽤户并发访问数据库时,⽐如操作同⼀张表时,数据库为每⼀个⽤户开启的事务,不能被其他事务的操作所⼲扰,多个并发事务之间要相互隔离。
  4. 持久性(Durability):持久性是指⼀个事务⼀旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。

演示MySQL事务

在dos命令窗口中开启MySQL事务:start transaction; 或者:begin;
回滚事务:rollback;
提交事务:commit;
只要执行以上的rollback或者commit,事务都会结束。
MySQL默认情况下采用的事务机制是:自动提交。所谓自动提交就是只要执行一条DML语句则提交一次。

事务隔离级别

image.png
隔离级别从低到高排序:读未提交 < 读提交 < 可重复读 < 串行化
不同隔离级别会存在不同的现象,现象按照严重性从高到低排序:脏读 > 不可重复读 > 幻读

查看与设置隔离级别

mysql默认的隔离级别:可重复读(REPEATABLE READ)。

  • 查看当前会话的隔离级别:select @@transaction_isolation;
  • 查看全局的隔离级别:select @@gobal.transaction_isolation;

设置事务隔离级别:

  • 会话级:set session transaction isolation level read committed;
  • 全局级:set global transaction isolation level read committed;

不同现象

脏读

指的是一个事务读取了另一个事务尚未提交的数据,即读取了另一个事务中的脏数据(Dirty Data)。在此情况下,如果另一个事务回滚了或者修改了这些数据,那么读取这些脏数据的事务所处理的数据就是不准确的。

不可重复读

指在一个事务内,多次读取同一个数据行,得到的结果可能是不一样的。这是由于其他事务对数据行做出了修改操作,导致数据的不一致性。

幻读

指在事务执行过程中,前后两次相同的查询条件得到的结果集不一致,可能会变多或变少。

隔离级别

读未提交(READ UNCOMMITTED)

A事务与B事务,A事务可以读取到B事务未提交的数据。这是最低的隔离级别。几乎两个事务之间没有隔离。这种隔离级别是一种理论层面的,在实际的数据库产品中,没有从这个级别起步的。
当事务隔离级别是读未提交时,三种现象都存在:脏读,不可重复读,幻读。
我们可以开启两个DOS命令窗口,模拟两个事务,演示一下这种隔离级别。三种现象中最严重的是脏读,我们只需要演示脏读问题即可,因为存在脏读的话,就一定存在不可重复读和幻读问题。

将全局事务隔离级别设置为:READ UNCOMMITTED

set global transaction isolation level read uncommitted;

开启两个DOS命令窗口来模拟两个事务:A事务与B事务。

A事务B事务
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(4);
mysql> select * from a;
image.png

通过以上测试,可以看到,A事务读取到了B事务还没有提交的数据。这种现象就是脏读。

读提交(READ COMMITTED)

A事务与B事务,A事务可以读取到B事务提交之后的数据。Oracle数据库默认的就是这种隔离级别。

将数据库的全局事务隔离级别设置为读提交:READ COMMITTED

set global transaction isolation level read committed;

演示:

A事务B事务
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(4);
mysql> select * from a;
image.png
mysql> commit;
mysql> select * from a;
image.png

通过以上测试看出,A事务只能读取到B事务提交之后的数据。这种隔离级别解决了脏读问题,但肯定是存在不可重复读和幻读问题。因为只要事务B进行了增删改操作之后并提交了,事务A读取到的数据肯定是不同的。即:不可重复读和幻读都存在。

可重复读(REPEATABLE READ)

这个隔离级别是MySQL数据库默认的。
A事务和B事务,A事务开启后,读取了某一条记录,然后B事务对这条记录进行修改并提交,A事务读取到的还是修改前的数据。这种隔离级别称为可重复读。

将数据库全局隔离级别修改为可重复读:

set global transaction isolation level repeatable read;

演示:

A事务B事务
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select empno,ename,sal from emp where empno=7369;
image.png
mysql> update emp set ename=‘SMITH’,sal=8000 where empno=7369;
mysql> commit;
mysql> select empno,ename,sal from emp where empno=7369;
image.png

通过以上测试得知:当事务隔离级别设置为可重复读时,避免了不可重复读问题。

那么在MySQL当中,当事务隔离级别设置为可重复读时,能够避免幻读问题吗?测试一下:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(5);
mysql> commit;
mysql> select * from a;
image.png

通过以上测试得知:**当事务隔离级别设置为可重复读时,也避免了幻读问题。是完全避免了幻读问题吗?并不是。**请看以下测试:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(6);
mysql> commit;
mysql> select * from a for update;
image.png

通过以上测试得知:当事务隔离级别设置为可重复读,MySQL会尽最大努力避免幻读问题,但这种隔离级别无法完全避免幻读问题。

串行化(SERIALIZABLE)

这种隔离级别最高,避免了所有的问题,缺点是效率低,因为这种隔离级别会导致事务排队处理,不支持并发。

设置数据库全局隔离级别为串行化:

set global transaction isolation level serializable;

演示:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(7);
mysql> select * from a;
image.png
mysql> commit;
image.png

通过以上测试得知:当事务隔离级别设置为串行化时,事务只能排队执行,不支持并发。

可重复读的幻读问题

在上面讲解过程中我提到,MySQL默认的隔离级别可重复读,在很大程度上避免了幻读问题(并不能完全解决),那么它是如何解决幻读问题的呢,解决方案包括两种:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好的避免了幻读问题。
  • 针对当前读(select … for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select … for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好的避免了幻读问题。

快照读是如何解决幻读的

什么是快照读?普通的select语句都是采用的快照读。顾名思义:在整个事务的处理过程中,执行相同的一个select语句时,每次都是读取的快照。(快照指的是固定的某个时刻的数据,就像现实世界中的拍照一样,把那个美好的时刻留下来)。也就是说,当事务隔离级别是可重复读,并且执行的select语句是一个普通的select语句时,都会采用快照读的方式读取数据,底层实现原理是:

  • 底层由 MVCC(多版本并发控制)实现,实现的方式是开始事务后,在执行第一个查询语句后,会创建一个 Read View,后续的查询语句利用这个 Read View,通过这个 Read View 就可以在 undo log 版本链找到事务开始时的数据,所以事务过程中每次查询的数据都是一样的,即使中途有其他事务插入了新纪录,是查询不出来这条数据的,所以就很好的避免了幻读问题。

演示:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a; //快照读
image.png
mysql> insert into a values(5);
mysql> commit;
mysql> select * from a; //快照读
image.png

当前读是如何解决幻读的

当前读,顾名思义:每一次都读取最新的数据。当前读包括:update、delete、insert、select…for update。这个很好理解,因为增删改的时候都要基于最新的数据进行增删改。
而select…for update原理是:对查询范围内的数据进行加锁,不允许其它事务对这个范围内的数据进行增删改。也就是说这个select语句范围内的数据是不允许并发的,只能排队执行,从而避免幻读问题。
select…for update加的锁叫做:next-key lock。我们可以称其为:间隙锁 + 记录锁。间隙锁用来保证在锁定的范围内不允许insert操作。记录锁用来保证在锁定的范围内不允许delete和update操作。

假如有这样的数据:
image.png
SQL语句是这样写的:

select * from a where id between 2 and 4 for update;

那么id在[2-4]区间的所有记录行被锁定,不能插入3是通过间隙锁来搞定的。不能修改或删除2和4是通过记录锁来搞定的。

演示:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a where id between 2 and 4 for update; // 当前读
image.png

出现幻读的两种情况

在同一个事务处理过程中,如果前后两次都采用快照读,或者都采用当前读,则不会出现幻读问题。如果第一次使用快照读,后面使用了当前读,则会出现幻读问题。

第一种产生幻读的场景

A事务与B事务。在A事务中第一次查询使用快照读,B事务插入数据。然后在A事务中第二次查询使用当前读。则会产生幻读现象。
演示:

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(5);
mysql> commit;
mysql> select * from a for update; // 产生了幻读
image.png
第二种产生幻读的场景

事务A与事务B,在事务A中第一次查询使用快照读,在事务B中插入一条数据,然后在事务A中更新事务B插入的那条记录,最后在事务A中再次使用快照读。则会发生幻读现象。

事务A事务B
mysql> use powernode
mysql> use powernode
mysql> start transaction;
mysql> start transaction;
mysql> select * from a;
image.png
mysql> insert into a values(6);
mysql> commit;
mysql> update a set id=100 where id=6; //主要是因为这个SQL语句的执行触发了当前读
mysql> select * from a; // 产生了幻读
image.png

总结可重复读的幻读问题

MySQL的可重复读隔离级别(默认隔离级),根据不同的查询方式,分别提出了避免幻读的方案:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读。
  • 针对当前读(select … for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读。

我举例了两个发生幻读场景的例子。

  • 第一个例子:对于快照读, MVCC 并不能完全避免幻读现象。因为当事务 A 更新了一条事务 B 插入的记录,那么事务 A 前后两次查询的记录条目就不一样了,所以就发生幻读。
  • 第二个例子:对于当前读,如果事务开启后,并没有执行当前读,而是先快照读,然后这期间如果其他事务插入了一条记录,那么事务后续使用当前读进行查询的时候,就会发现两次查询的记录条目就不一样了,所以就发生幻读。

所以,MySQL 可重复读隔离级别并没有彻底解决幻读,只是很大程度上避免了幻读现象的发生。
要避免这类特殊场景下发生幻读的现象的话,就是尽量在开启事务之后,马上执行 select … for update 这类当前读的语句,因为它会对记录加 next-key lock,从而避免其他事务插入一条新记录。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/276967.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

螺旋阵思维与代码

1.思维 56789419202110318252211217242312116151413观察上面的螺旋阵,你就会发现数字从小到大,按照贝壳的螺旋形依次排列. 走到头就要换一个方向. 看到螺旋数组可以让人想象到贪吃蛇,拿出一个字符串设置为方向,碰到头方向改变,这样循环模拟,直到格子里的数>行和列数(n) .…

c++ 常用函数 集锦 整理中

c 常用函数集锦 目录 c 常用函数集锦 1、string和wstring之间转换 2、经纬度转 xyz 值 互转 3 、获取 根目录下的文件地址 1、string和wstring之间转换 std::string convertWStringToString(std::wstring wstr) {std::string str;if (!wstr.empty()){std::wstring_convert<…

51-31 VastGaussian,3D高斯大型场景重建

2024 年 2 月&#xff0c;清华大学、华为和中科院联合发布的 VastGaussian 模型&#xff0c;实现了基于 3D Gaussian Splatting 进行大型场景高保真重建和实时渲染。 Abstract 现有基于NeRF大型场景重建方法&#xff0c;往往在视觉质量和渲染速度方面存在局限性。虽然最近 3D…

pycharm @NotNull parameter ‘module‘ of ...

下载了最新pycharm &#xff0c;无法启动运行 pycharm或者idea中Run/Debug Python项目报错 Argument for NotNull parameter ‘module‘ of … 解决方案 删除项目根目录的 idea 文件夹 随后重启&#xff0c;重新配置即可

图论(蓝桥杯 C++ 题目 代码 注解)

目录 迪杰斯特拉模板&#xff08;用来求一个点出发到其它点的最短距离&#xff09;&#xff1a; 克鲁斯卡尔模板&#xff08;用来求最小生成树&#xff09;&#xff1a; 题目一&#xff08;蓝桥王国&#xff09;&#xff1a; 题目二&#xff08;随机数据下的最短路径&#…

C++实验 面向对象编程

一、实验目的&#xff1a; 掌握类中静态成员的定义方法&#xff0c;初始化方法&#xff0c;使用方法&#xff1b; 掌握类的友元说明方法&#xff0c;理解友元的使用特点 二、实验内容&#xff1a; 1、编写程序&#xff0c;统计某旅馆住宿客人的总数&#xff0c;要求输入客人…

英国伦敦交易所股票清单列表数据API接口

# Restful API https://tsanghi.com/api/fin/stock/XLON/list?token{token}更新时间&#xff1a;收盘后3~4小时。 更新周期&#xff1a;每天。 请求方式&#xff1a;GET。 # 测试&#xff1a;返回不超过10条数据&#xff08;2年历史&#xff09; https://tsanghi.com/api/fin/…

Linux下的多线程编程:原理、工具及应用(2)

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;Flower of Life—陽花 0:34━━━━━━️&#x1f49f;──────── 4:46 &#x1f504; ◀️ ⏸ ▶️ ☰ …

C++第五弹---类与对象(二)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 类与对象 1、类对象模型 1.1、如何计算类对象的大小 1.2、类对象的存储方式猜测 1.3、结构体内存对齐规则 2、this指针 2.1、this指针的引出 2.2…

springboot275毕业就业信息管理系统的设计与实现

毕业就业信息管理系统设计与实现 摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装毕业就业信息管理系统软件…

【C语言进阶篇】数据在内存中的存储

目录 1.大小端字节序和字节序判断 2.浮点数在内存中的存储与读取 2.1 浮点数在内存中的存储 2.2 浮点数在内存中的读取 在前面的学习中&#xff0c;我们知道内存被划分为一个个小的内存单元&#xff0c;数据就是存储在这些内存单元中的。那么&#xff0c;具体是如何存储的&am…

Unity中的网格创建和曲线变形

Unity中的网格创建和曲线变形 3D贝塞尔曲线变形贝塞尔曲线基础线性公式二次方公式三次方公式 Unity 实现3D贝塞尔曲线变形准备工作脚本概述变量定义 变量解析函数解析 获取所有子节点GetAllChildren 获取所有子节点UpdateBezierBend 控制点更新CalculateBezier Bezier 曲线公式…

pytorch升级打怪(三)

数据集合数据加载器 简介加载数据集迭代和可视化数据集为您的文件创建自定义数据集__init____len____getitem__ 准备您的数据以使用DataLoaders进行训练通过DataLoader进行遍载 简介 处理数据样本的代码可能会变得混乱且难以维护&#xff1b;理想情况下&#xff0c;我们希望我…

三分钟快速理解Yarn的工作流程

知识讲解之前&#xff0c;我们先来听一段小故事(不要带入现实) 健鑫集团是一家公司&#xff0c;主要业务就是承接其他公司外包出去的项目&#xff0c;这地方是怎么运行的呢&#xff1f; 外部想和集团达成合作&#xff0c;草拟个合同直接和 Boss谈&#xff0c;Boss 来者不拒&am…

智慧城市:提升城市治理能力的关键

目录 一、智慧城市的概念及特点 二、智慧城市在提升城市治理能力中的应用实践 1、智慧交通&#xff1a;提高交通治理效率 2、智慧政务&#xff1a;提升政府服务水平 3、智慧环保&#xff1a;加强环境监测与治理 4、智慧安防&#xff1a;提高城市安全水平 三、智慧城市在…

css 各种方位计算 - client系列 offset系列 scroll系列 x/y 系列

offset系列 HTMLElement.offsetTop - Web API 接口参考 | MDN 一文读懂offsetHeight/offsetLeft/offsetTop/offsetWidth/offsetParent_heightoffset-CSDN博客 client系列 搞清clientHeight、offsetHeight、scrollHeight、offsetTop、scrollTop-CSDN博客 scroll系列 秒懂scr…

Python控制摄像头并获取数据文件

一、引言 摄像头作为计算机视觉领域的核心设备之一&#xff0c;广泛应用于视频监控、图像采集和数据处理等领域。通过Python编程语言&#xff0c;我们可以实现对摄像头的精确控制&#xff0c;包括摄像头的开启、关闭、参数设置以及数据获取等功能。 目录 一、引言 二、摄像头…

ElementUI Message 消息提示,多个显示被覆盖的问题

现象截图&#xff1a; 代码&#xff1a;主要是在this.$message 方法外层加上 setTimeout 方法 <script> export default {name: "HelloWorld",props: {msg: String,},methods: {showMessage() {for (let i 0; i < 10; i) {setTimeout(() > {this.$mess…

上海亚商投顾:沪指震荡调整 飞行汽车概念股持续爆发

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日震荡调整&#xff0c;深成指走势稍强&#xff0c;创业板指一度涨超1%&#xff0c;黄白二线走势分化&a…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:ColumnSplit)

将子组件纵向布局&#xff0c;并在每个子组件之间插入一根横向的分割线。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 ColumnSplit通过分割线限制子组件的高度。初始…