Machine Learning ---- Feature Scaling

目录

 一、What is feature scaling::

二、Why do we need to perform feature scaling?

三、How to perform feature scaling:

        1、Normalization:

        2、Mean normalization:

        3、Standardization (data needs to follow a normal distribution):


 一、What is feature scaling:

        Simply put, it is the process of normalizing the units of data, which results in significant differences in the non unit values of various data in the training dataset. However, we use normalization and other methods to stabilize the data range within a relatively small area.

二、Why do we need to perform feature scaling?

        I have read many articles, and it's like how we often have a one-sided understanding of something due to its overly prominent side. For the more valuable side, we unconsciously lean towards the past. It is best for us to understand this point from a contour map:

        Using the example said by Andrew Ng, let's assume that his housing price prediction is:

Total square meter: 300 square meters~2000 square metersNumber of rooms: 1 to 5
w_1 = 50w_2 = 0.1
w_1 = 0.1w_2 = 50

        Meanwhile, assuming b=50, for a 2000 square meter, 5-room house, the normal price would be 500000 yuan:

        At the same time, assuming b=50, for a 2000 square meter, 5-room house, the normal price is 500000 yuan. Therefore, when we bring in two different groups of w1 and w2 in the list, we can find that the factor with the larger value is: the total square * 50+room * 0.1, which gives a value of about 100000 yuan, while the other group is about 500000 yuan.

        We can find that we prefer a smaller value with a larger corresponding coefficient. So, what is the relationship between this and gradient descent?

        We can understand it from the contour map:

        This is a contour map of J(\vec{w},b)  ,So we can take a look at how gradient descent may go if it needs to reach its minimum point:

        Due to the short axis range corresponding to size and the long axis corresponding to room, in order to obtain a minimum value that satisfies the condition through gradient descent, this situation may occur, leading to slower convergence. That's why we need to perform feature scaling, and if the image is not an ellipse but a circle, its effect is the best case.

        At the same time, we can also combine Euclidean distance for understanding

三、How to perform feature scaling:

        1、Normalization:

x^{'} = \frac{x - min(x)}{max(x) - min(x)}

        The corresponding value range is [0,1], but there are also more flexible forms:

x^{'} = a + \frac{x - min(x)}{max(x) - min(x)}(b - a)

        The corresponding value range is [a, b]. Generally speaking, the values of a and b should not be too large or too small, and [-5, 5] are suitable.

        2、Mean normalization:

x^{'} = \frac{x - \bar{x}}{max(x) - min(x)}

        3、Standardization (data needs to follow a normal distribution):

x^{'} = \frac{x - \bar{x}}{\sigma }

        The denominator corresponds to the standard deviation of x, which is actually the standardized formula for a normal distribution:

x^{'} = \frac{x - \mu}{\sigma }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278609.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于 闰年 的小知识,为什么这样判断闰年

闰年的规定&#xff1a; 知道了由来&#xff0c;我们就可以写程序来判断&#xff1a; #include <stdio.h> int main() {int year, leap;scanf("%d",&year);if((year%4 0 && year%100 ! 0) || year%400 0)leap 1;else leap 0;if(leap) printf(…

26-Java访问者模式 ( Visitor Pattern )

Java访问者模式 摘要实现范例 访问者模式&#xff08;Visitor Pattern&#xff09;使用了一个访问者类&#xff0c;它改变了元素类的执行算法&#xff0c;通过这种方式&#xff0c;元素的执行算法可以随着访问者改变而改变访问者模式中&#xff0c;元素对象已接受访问者对象&a…

为什么说CRM是制造业数字化模型的源头?

2023年&#xff0c;中国制造业投资持续企稳向好&#xff0c;全年增长6.5%。制造业发展韧性强劲&#xff0c;但如何激发有效需求&#xff0c;在防范产能过剩的同时实现产业升级&#xff0c;这是摆在当下诸多制造企业面前的现实问题。 山东章鼓企划信息管理处部长、山东鲸头鹳智…

win修改图标自定义QQ桌面图标

当安装了TIM后&#xff0c;想把图标改成QQ 图标见顶部&#xff0c;或通过网盘下载 提取码&#xff1a;9Ayc 操作步骤&#xff1a; 1.桌面右键图标&#xff0c;点击属性 2.选择快捷方式-更改图标 3.浏览选择下载的ico图标即可

基于单片机的老人防丢系统设计

目 录 摘 要 I Abstract II 引 言 3 1 系统总体架构 6 1.1方案设计与选择 6 1.2 系统架构设计 6 1.3 系统器件选择 7 2 系统硬件设计 9 2.1 单片机外围电路设计 9 2.2 LCD1602液晶显示电路设计 12 2.3 短信模块电路设计 14 2.4 GPS模块电路设计 14 2.5 电源与按键控制电路设计…

C++——字符串、读写文件、结构体、枚举

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的夜间车辆检测系统(深度学习代码+UI界面+训练数据集)

摘要&#xff1a;开发夜间车辆检测系统对于自动驾驶技术具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个夜间车辆检测系统&#xff0c;并提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并对比了YOLOv7、YOLOv6、YOLOv5&#xff0c;展示了不同模型间…

力扣坑题:回文排列

bool canPermutePalindrome(char* s){ int arr[128]{0}; for(int x0;x<strlen(s);x) { arr[(s[x])]; } int flag0; for(int i0;i<128;i) {if(arr[i]%2!0){flag;} } if(flag>1) {return false; } return true; }没想到吧&#xff0c;不止26个英文字母

maven一点通

1.maven简介 Maven是一个基于Java的工程构建工具&#xff0c;用于管理和构建项目的依赖关系。它提供了一种标准的项目结构和一组约定&#xff0c;使得项目的开发、构建、部署和文档化更加容易和可靠。 Maven的主要功能包括&#xff1a; 依赖管理&#xff1a;Maven可以自动下载…

海康威视相机SDK二次开发(JAVA语言)

目录 前言客户端创建虚拟相机示例代码保存图片程序运行结果修改需求 二次开发引入外部包对SaveImage.java文件进行修改保存图片saveDataToFile方法选择相机chooseCamera方法主方法 FileUtil类处理过期照片启动类与配置文件application.yml通过实体类读取yml启动类 SaveImage.ja…

【JS逆向学习】猿人学第六题 js混淆 回溯

逆向目标 网址&#xff1a;https://match.yuanrenxue.cn/match/6接口&#xff1a;https://match.yuanrenxue.cn/api/match/6参数&#xff1a;payload(m、q) 逆向过程 老规矩&#xff0c;先来分析网络请求&#xff0c;加密的地方一目了然&#xff0c;没什么可多说的&#xff…

惬意上手Redis

Redis介绍 Redis&#xff08;全称为REmote Dictionary Server&#xff09;是一个开源的、内存中的数据存储结构&#xff0c;主要用作应用程序缓存或快速相应数据库。 REmote Dictionary Server: 有道翻译Redis是“远程字典服务”&#xff0c;远程不过是远程访问&#xff0c;而…

Linux:搭建ntp服务器

我准备两个centos7服务器 一个为主服务器连接着外网&#xff0c;并且搭建了ntp服务给其他主机同步 另外一个没有连接外网&#xff0c;通过第一台设备去同步时间 首先两个服务器都要安装ntp软件 yum -y install ntp 再把他俩的时间都改成别的 左侧的是主服务器&#xff0c;主…

07|链(下):想学“育花”还是“插花”用RouterChain确定客户意图

任务设定 鲜花养护&#xff08;保持花的健康、如何浇水、施肥等&#xff09;鲜花装饰&#xff08;如何搭配花、如何装饰场地等&#xff09; 如果接到的是第一类问题&#xff0c;你要给ChatBot A指示&#xff1b;如果接到第二类的问题&#xff0c;你要给ChatBot B指示。 整体…

数据可信流通,从运维信任到技术信任

信任 共同观点&#xff1a; 信任是涉及交易或交换关系的基础 身份可确认利益可依赖能力有预期行为有后果 数据流通中的不可信风险 内循环&#xff1a;数据持有方在自己的运维安全域内对自己的额数据使用和安全拥有全责外循环&#xff1a;数据要素在离开持有方安全域后&#…

【网络安全】 MSF生成木马教程

本文章仅用于信息安全学习&#xff0c;请遵守相关法律法规&#xff0c;严禁用于非法途径。若读者因此作出任何危害网络安全的行为&#xff0c;后果自负&#xff0c;与作者无关。 环境准备&#xff1a; 名称系统位数IP攻击机Kali Linux6410.3.0.231客户端Windows 76410.3.0.234…

ACWing--基础算法--贪心(部分题解)

目录 906.区间问题--区间分组 906.区间问题--区间分组 原题&#xff1a; 给定 N 个闭区间 [ai,bi]&#xff0c;请你将这些区间分成若干组&#xff0c;使得每组内部的区间两两之间&#xff08;包括端点&#xff09;没有交集&#xff0c;并使得组数尽可能小。 输出最小组数。 输…

Linux 部署 Samba 服务

一、Ubuntu 部署 Samba 1、安装 Samba # 更新本地软件包列表 sudo apt update# 安装Samba sudo apt install samba# 查看版本 smbd --version2、创建共享文件夹&#xff0c;并配置 Samba 创建需要共享的文件夹&#xff0c;并赋予权限&#xff1a; sudo mkdir /home/test sud…

分布式事务的解决方案--Seata架构

一、Seata的XA模式 二、AT模式原理 三、TCC模式原理 四、MQ分布式事务 异步&#xff0c;非实时&#xff0c;实现最终的一致性。 四、分布式事务的解决方案

VMware下创建虚拟机

Centos7是比较常用的一个Linux发行版本&#xff0c;在国内的使用比例比较高 安装完VMware一定要检查虚拟网卡有没有安装成功&#xff0c;如果没有VMnet1和VMnet8 虚拟机是无法上网的&#xff0c;就需要卸载重启电脑重新安装 控制面板—网络和Internet—网络连接 快捷方式打开&a…