C语言黑魔法第三弹——动态内存管理

本文由于排版问题,可能稍显枯燥,但里面知识点非常详细,建议耐心阅读,帮助你更好的理解动态内存管理这一C语言大杀器

进阶C语言中有三个知识点尤为重要:指针、结构体、动态内存管理,这三个知识点决定了我们之后学习数据结构是否顺利,在之前,我们已经讲过指针和结构体这两大内容,今天,我们就来讲解C语言黑魔法最后一弹——动态内存管理。

首先,我们先来看一下动态开辟的空间在内存中的分布,感受一下其中的魅力:

目录

一、为什么存在动态内存分配

二、动态内存函数的介绍

1、malloc

分配内存空间

具体用法如下:

​编辑

注意事项

2、free

free函数的功能

free函数的注意事项

3、calloc

分配内存空间

具体用法

​编辑

注意事项

4、realloc

重新分配空间

具体用法:

​编辑

注意事项:

三、常见的动态内存错误

3.1 对NULL指针的解引用操作

3.2 对动态开辟空间的越界访问

3.3 对非动态开辟内存使用free释放


一、为什么存在动态内存分配

int arr[20]={0};

比如上面这个数组,我们申请了80个字节的空间,能够存放20个整型数组,但是在实际应用中,我们可能需要更多的空间,或者是只需要40个字节的空间,这样的话就会造成空间浪费,鉴于上面这些问题,所以就有了动态内存分配,动态内存分配可以让空间得到更大的利用。

二、动态内存函数的介绍

动态内存函数主要是mallocfreecallocrealloc函数的使用,下面我们就针对这几个函数展开详细讲解:

1、malloc

malloc函数的原型如下:

void* malloc(size_t size);

分配内存空间

malloc函数的作用是开辟一个size字节大小的空间,并返回一个无类型的指针。

malloc函数如果开辟空间成功,返回的指针指向的内存块是未初始化的;

malloc也有开辟失败的可能,所以在用malloc函数开辟空间时,一定要检查是否开辟成功,避免出错。

具体用法如下:

#include<stdio.h>
#include<stdlib.h>
int main()
{int n = 5;//开辟n个int类型的空间int* ps = (int*)malloc(n*sizeof(int));//判断是否开辟成功if (ps == NULL){printf("空间开辟失败\n");return 1;}//对开辟的动态空间进行操作for (int i = 0; i < n; i++){ps[i] = i * 2;}//打印结果for (int i = 0; i < n; i++){printf("%d ", ps[i]);}//释放开辟的空间free(ps);ps = NULL;return 0;
}

注意事项

  • 使用malloc函数分配内存后,一定要在不再需要这块内存空间时使用free函数释放内存,防止内存泄漏。
  • 在使用malloc分配内存时,要确保分配的内存空间足够存储所需数据,避免发生缓冲区溢出。
  • malloc函数返回的指针类型是void*,需要进行类型转换为实际需要的指针类型。
  • 在分配内存时,要考虑到内存对齐的问题,避免因内存对齐导致的性能损失。
  • malloc函数开辟的空间时一个完整的空间,而不是碎片化的

2、free

free函数的原型如下:

void free(void* ptr);
  • ptr:指向要释放的内存空间的指针。

free函数的功能

free函数就是用来释放我们所开辟的空间的,在上面也有应用,需要强调的是:free函数释放的空间必须是我们动态开辟出来的空间,而不是其他空间


free函数的注意事项

  • 仅能释放通过malloccallocrealloc函数分配的动态内存空间,不能释放静态内存或栈上的内存。
  • 释放内存空间后,应该将指针设置为NULL,以避免出现野指针的情况。
  • 释放已经释放过的内存空间会导致未定义的行为,因此应该避免重复释放同一块内存空间。
  • 在释放内存空间后,尽量避免继续使用指向已释放内存空间的指针,以防止出现悬空指针的情况。

3、calloc

calloc函数的原型如下:

void* calloc(size_t num, size_t size);

分配内存空间

calloc函数的用法与malloc函数的用法几乎完全一致,唯一区别就是传参的不同,malloc函数的参数是开辟空间的字节个数,而calloc函数传的参数是分配的元素个数,和每个元素的大小(即每个元素所占的字节数)

具体用法

#include<stdio.h>
#include<stdlib.h>
int main()
{int n = 5;//开辟n个int类型的空间int* ps = (int*)calloc(n,sizeof(int));//判断是否开辟成功if (ps == NULL){printf("空间开辟失败\n");return 1;}//对开辟的动态空间进行操作for (int i = 0; i < n; i++){ps[i] = i * 2;}//打印结果for (int i = 0; i < n; i++){printf("%d ", ps[i]);}//释放开辟的空间free(ps);ps = NULL;return 0;
}

注意事项

  • calloc函数在分配内存时会将内存空间初始化为0,这有助于避免未初始化内存带来的问题。
  • 使用calloc函数分配的内存空间同样需要在不再需要时使用free函数释放,以避免内存泄漏。
  • 类似于malloc函数,calloc函数返回的指针类型是void*,需要进行类型转换为实际需要的指针类型。
  • 在使用calloc函数分配内存时,同样需要考虑内存对齐的问题,确保内存分配的有效性和性能。

4、realloc

当我们在C语言中需要重新分配已经分配的内存空间时,通常会使用realloc函数。realloc函数的原型如下:

void* realloc(void* ptr, size_t size);

重新分配空间

realloc函数用于重新分配已经分配的内存空间的大小,可以扩大或缩小已分配内存的大小。参数ptr是指向已分配内存空间起始地址的指针,size是重新分配后的内存空间大小(单位是字节)。realloc函数返回一个指向重新分配后内存空间起始地址的指针。

具体用法:

下面是一个realloc函数重新分配空间的案例:

#include<stdio.h>
#include<stdlib.h>
int main()
{int n = 5;//分配n个int类型的空间int* ps = (int*)malloc(n * sizeof(int));//判断是否开辟成功if (ps == NULL){printf("开辟空间失败\n");return 1;}//用realloc函数进行扩容ps = (int*)realloc(ps, 10 * sizeof(int));//判断是否扩容成功if (ps == NULL){printf("扩容失败\n");return 1;}free(ps);ps = NULL;return 0;
}

注意事项:

  • realloc函数可以用于扩大或缩小已分配内存空间的大小,但不能保证原始数据的完整性。如果扩大内存空间,新分配的内存空间中的数据是未定义的;如果缩小内存空间,可能会丢失部分数据。
  • 使用realloc函数重新分配内存空间时,建议将返回的指针赋值给原指针变量,以防止内存泄漏。
  • 如果realloc函数无法在原地重新分配内存空间,将会在另一块内存空间中重新分配,并将原数据复制到新内存空间中。因此,重新分配可能会比较耗时。
  • 类似于malloccalloc函数,使用realloc函数分配的内存空间同样需要在不再需要时使用free函数释放,以避免内存泄漏。

三、常见的动态内存错误

3.1 对NULL指针的解引用操作

void test()
{int* p = (int*)malloc(INT_MAX / 4);*p = 20;//如果p的值为NULL,就会出现问题free(p);
}

解决方案:

3.2 对动态开辟空间的越界访问

#include<stdio.h>
#include<stdlib.h>
int main()
{int* p = (int*)malloc(40);if (p == NULL){printf("开辟失败\n");return 1;}int i = 0;for (i = 0; i <= 10; i++){printf("%d ", p[i]);}free(p);p = NULL;return 0;
}

运行上述代码后,你会发现是有问题的

解决方法:

3.3 对非动态开辟内存使用free释放

void test()
{int a = 10;int* p = &a;free(p);
}

显然,这样写是错误的,我们在上文中也强调过free函数释放的空间必须是动态内存函数开辟出来的


上面这些问题都是没有学习好动态内存函数的一些细节而造成出错,当然,这并不是全部错误,一个程序员想要写BUG是拦不住的,你要做的,是把我上面那些内容进行仔细的学习和研究,可能文笔并不好,但动态内存管理所包含的知识点基本都有,如果有不理解的,欢迎私信或者在评论区中指出,我会尽我所能帮你解决

感谢观看!!!创作不易,还请点一个小小的赞!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

利用textarea和white-space实现最简单的文章编辑器 支持缩进和换行

当你遇到一个非常基础的文章发布和展示的需求&#xff0c;只需要保留换行和空格缩进&#xff0c;你是否会犹豫要使用富文本编辑器&#xff1f;实际上这个用原生的标签两步就能搞定&#xff01; 1.直接用textarea当编辑器 textarea本身就可以保存空格和换行符&#xff0c;示例如…

DockerFile遇到的坑

CMD 命令的坑 dockerfile 中的 CMD 命令在docker run -it 不会执行 CMD 命令。 FROM golang WORKDIR / COPY . ./All-in-one CMD ["/bin/sh","-c","touch /kkk.txt && ls -la"] RUN echo alias ll"ls -la" > ~/.bashrc(不…

一维前缀和一维差分(下篇讲解二维前缀和二维差分)(超详细,python版,其他语言也很轻松能看懂)

本篇博客讲解一维前缀和&#xff0c;一维差分&#xff0c;还会给出一维差分的模板题&#xff0c;下篇博客讲解 二维前缀和&二维差分。 一维前缀和&#xff1a; 接触过算法的小伙伴应该都了解前缀和&#xff0c;前缀和在算法中应用很广&#xff0c;不了解也没有关系&#…

Ubuntu 搭建gitlab服务器,及使用repo管理

一、GitLab安装与配置 GitLab 是一个用于仓库管理系统的开源项目&#xff0c;使用Git作为代码管理工具&#xff0c;并在此基础上搭建起来的Web服务。 1、安装Ubuntu系统&#xff08;这个教程很多&#xff0c;就不展开了&#xff09;。 2、安装gitlab社区版本&#xff0c;有需…

车载电子电器架构 - 网络拓扑

车载电子电器架构 - 网络拓扑 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师 (Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠…

学习笔记Day11:初探Linux

Linux系统初探 Linux系统简介 发行版本Ubuntu/centOS&#xff0c;逻辑一样&#xff0c;都可以用。 服务器 本质是一台远程电脑&#xff0c;大多数服务器是Linux系统&#xff0c;通常使用命令行远程访问而不是桌面操作。LInux服务器允许多用户同时访问。NGS组学测序数据上游…

使用树莓派 结合Python Adafruit驱动OLED屏幕 显示实时视频

关于OLED屏幕的驱动&#xff0c;在之前我已经写过很多篇博文&#xff1a; IIC 协议 和 OLED_oled iic-CSDN博客 香橙派配合IIC驱动OLED & 使用SourceInsight解读源码_香橙派5 驱动屏幕-CSDN博客 这两篇博文都是通过模拟或调用IIC协议来使用C语言驱动OLED屏幕&#xff0c;现…

【Linux】进程---概念---进程---优先级

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;Linux_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.操作系统(Operator System) 1.1 概念 1.2 设计OS的目的 1.3 定位 1.4 如何理解 "管理" 1.5 总结 1.6 系统调用和…

数据可视化-ECharts Html项目实战(3)

在之前的文章中&#xff0c;我们学习了如何创建堆积折线图&#xff0c;饼图以及较难的瀑布图并更改图标标题。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 …

主存中存储单元地址的分配

主存中存储单元地址的分配 为什么写这篇文章? 因为我看书中这部分时&#xff0c;看到下面的计算一下子没反应过来&#xff1a; 知识回顾&#xff08;第1章&#xff09; 计算机系统中&#xff0c;字节是最小的可寻址的存储单位&#xff0c;通常由8个比特&#xff08;bit&…

OpenCV 单目相机标定

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 单目相机的标定过程与双目相机的标定过程很类似,具体过程如下所述: 1、首先我们需要获取一个已知图形的图像(这里我们使用MATLAB所提供的数据)。 2、找到同名像点(匹配点),这里主要是探测黑白格子之间的角点…

鸿蒙Harmony应用开发—ArkTS声明式开发(画布组件:Canvas)

提供画布组件&#xff0c;用于自定义绘制图形。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 不支持。 接口 Canvas(context?: CanvasRenderingContext2D) 从API version 9开始&…

huawei services HK华为云服务

huaweiserviceshk是一种云计算服务&#xff0c;为华为云服务用户提供了多种服务&#xff0c;包括云服务器、数据库、存储、网络等&#xff0c;用户可以根据自己的需求选择不同的服务并支付相应的费用 如何付费呢&#xff0c;这里可以使用441112&#xff0c;点击获取 卡片信息在…

机器人可反向驱动能力与力控架构

反向驱动性是电机传动系统的机械特性&#xff0c;它描述了运动是否可以轻松反转 。特别是&#xff0c;反向驱动能力取决于两个因素&#xff1a;传动运动效率和整体执行器机械阻抗。反向运动中传动装置的低运动效率意味着所施加的外力的大部分被运动反作用力抵消。然而&#xff…

24 OpenCV直方图反向投影

文章目录 参考反向投影作用calceackProject 反向投影mixchannels 通道图像分割示例 参考 直方图反向投影 反向投影 反向投影是反映直方图模型在目标图像中的分布情况简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型 作用…

Unity PS5开发 天坑篇 之 DEVKit环境部署与系统升级02

上一篇各位大神们已经收到了SONY官方免费寄送的PS5开发机与测试机&#xff0c;恭喜大家成为SONY的开发者, 本篇继续PS5开发机的部署与开发套件使用。 一, PC安装PS5 SDK与系统升级 1. PC/PS5 SDK Manager下载安装包 登录开发者账号后&#xff0c;Development->Resources&a…

Android 开发环境搭建(Android Studio 安装图文详细教程)

Android Studio 下载 https://developer.android.google.cn/studio?hlzh-cn Android Studio 安装 检查电脑是否启用虚拟化 如果没有开启虚拟化&#xff0c;则需要进入电脑的 BIOS 中开启 直接 next选择安装的组件&#xff0c;Android Studio 和 Android 虚拟设备&#xff…

【MLLM+轻量多模态模型】24.02.Bunny-v1.0-2B-zh: 轻量级多模态语言模型 (效果一般)

24.02 北京人工智能研究院&#xff08;BAAI&#xff09;提出以数据为中心的轻量级多模态模型 arxiv论文&#xff1a;2402.Efficient Multimodal Learning from Data-centric Perspective 代码&#xff1a;https://github.com/BAAI-DCAI/Bunny 在线运行&#xff1a;https://wis…

【GDB Debugger】新手快速入门学习笔记

文章目录 前言第一讲 什么是GDB第二讲 搭建实验环境第三讲 快速开始第四讲 举例说明如何查看变量信息——print、step第五讲 使用GDB的技巧&#xff08;只在此展开观察点&#xff09;第六讲 调试core文件&#xff08;针对UNIX&#xff0c;程序崩溃时&#xff09;第七讲 调试一个…

如何搭建“Docker Registry私有仓库,在CentOS7”?

1、下载镜像Docker Registry docker pull registry:2.7.1 2、运行私有库Registry docker run -d -p 5000:5000 -v ${PWD}/registry:/var/lib/registry --restartalways --name registry registry:2.7.1 3、拉取镜像 docker pull busybox 4、打标签&#xff0c;修改IP&#x…