C语言数据结构与算法笔记(排序算法)

排序算法

基础排序

冒泡排序

核心为交换,通过不断进行交换,将大的元素一点一点往后移,每一轮最大的元素排到对应的位置上,形成有序。
设数组长度为N,过程为:

  • 共进行N轮排序
  • 每一轮排序从数组的最左边开始,两两元素进行比较,左边元素大于右边元素,就交换两个元素的位置,否则不变。
  • 每轮排序都会将剩余元素中最大的一个推到最右边,下次排序就不再考虑对应位置的元素。

注意交换不能直接进行,需要中间元素。
实际上排序不需要N轮,N-1轮即可,最后一轮只有一个元素未排序。

// 冒泡排序
void BubbleSort(int arr[], int size)
{for(int i = 0; i < size-1 ;++i) // 减1是不考虑最后一次交换{for(int j = 0 ; j < size - i - 1; ++j ){if(arr[j] > arr[j+1]){int tmp = arr[j]; // 加入中间元素tmp进行交换arr[j] = arr[j+1];arr[j+1] = tmp;}}}
}int main()
{int size = 7;int arr1[] = {2,4,1,7,4,9,3};BubbleSort(arr1, size);for(int i = 0 ; i < size;++i){printf("%d ", arr1[i]);}
}

优化:如果整轮排序中没有出现任何交换,则说明数组是有序的,内层循环中加入标记
没有发生任何交换,则flag一定是1,数组有序

// 改进:没有出现交换则已经有序
void BubbleSort1(int arr[], int size)
{for(int i = 0 ; i < size - 1; ++i){_Bool flag = 1; // 加入标记for(int j = 0 ; j < size - 1 - i; ++j){   int tmp =arr[j];arr[j] = arr[j+1];arr[j+1] = tmp;}if(flag){break;}}
}

排序稳定性,大小相同的两个元素在排序前和排序后的先后顺序不变,则排序算法就是稳定的。比如以上的冒泡排序法只会在前者大于后者的情况下才会发生交换,不会影响到相等的两个元素。

插入排序

类似于斗地主的插牌。默认一开始只有第一张牌是有序的,剩余部分进行遍历,然后插到前面对应的位置上。
设数组长度为N

  • 一共进行N轮排序
  • 每轮排序会从后面依次选择一个元素,与前面已经处于有序的元素,从后往前比较,直到遇到一个不大于当前元素的元素,将当前元素插入到此元素的前面。
  • 插入元素后,后续元素则全部后移一位。
  • 当后面所有元素全部遍历完成,全部插入到对应位置之后结束排序。
// 插入排序
void InsertSort(int arr[], int size)
{for(int i = 1; i < size -1; ++i) // 从第2个元素开始{int tmp = arr[i], j = i;while (j > 0 && arr[j-1] > tmp) // 只要j>0并且前一个元素大于当前元素{arr[j] = arr[j-1]; // 交换前一个元素j--;}arr[j] = tmp;}
}
int main()
{int arr1[] = {2,1,8,5,6,4};InsertSort(arr1, 6);printArray(arr1, 6);     
}

改进:寻找插入位置上逐个比较,花费时间长,如果前面一部分元素已经是有序状态,可以考虑使用二分搜索算法来查找对应的插入位置,节省插入点的时间。

// 二分搜索法
int BinarySearch(int arr[], int left, int right, int target)
{int mid;while(left <= right){mid = (left + right) / 2;if(target == arr[mid]){return mid + 1;}else if (target < arr[mid]){right = mid - 1; // 目标值小于中间的值,往左边去找}else{left = mid + 1; // 往右边去找}}return left; // 二分划分范围,left就是插入的位置
}
// 改进的插入排序
void InsertSort1(int arr[], int size)
{for(int i = 0 ; i < size; ++i){int tmp = arr[i];int j = BinarySearch(arr,0,size-1,arr[i]); // 二分搜索查找插入的位置for( int k = i ; k > j; k--){arr[k] = arr[k-1]; // 往后移}arr[j] = tmp;}
}

算法稳定性,在优化前的插入排序,实际上是不断向前寻找一个不大于待插入元素的元素,相等时只会插入到其后面,不会修改相等元素的顺序;而改进后的二分搜索法,可能会将两个连续相等元素分割开来。

选择排序

每次都去后面找一个最小的放到前面。
设数组长度为N

  • 共进行N轮排序
  • 每轮排序会从后面的所有元素中寻找一个最小的元素,与已经排序好的下一个位置进行互换
  • 进行N轮交换后,得到有序数组
// 选择排序
void SelectSort(int arr[], int size)
{for(int i = 0 ; i < size - 1; ++i) // N-1轮排序{int min = i ; // 记录当前最小的元素,默认是剩余元素中的第一个for(int j = i + 1; j < size;++j){if(arr[min] > arr[j]){min = j; }int tmp = arr[i]; // 找出最小元素之后,开始交换arr[i] = arr[min];arr[min] = tmp;}}
}
// 打印
void printArray(int arr[],int size)
{for(int i = 0 ; i < size;++i){printf("%d ", arr[i]);}
}
int main()
{int arr1[] = {2,9,6,8,3,6,5};SelectSort(arr1 , 7);printArray(arr1, 7);
}

改进:因为每次需要选一个最小的,不妨顺便选个最大的,小的往左边丢,大的往右边丢。

// 交换
void swap(int* a, int*b)
{int tmp = *a;*a = *b;*b = tmp;
}
// 优化的选择排序
void SelectSort1(int arr[], int size)
{int left=0, right = size - 1; // 假设左右排好序,往中间缩小while (left < right){int max = right, min = left;for(int i = left; i < right; ++i){// 同时找最大和最小的if(arr[i] < arr[min]){min = i;}if(arr[i] > arr[max]){max = i;}}swap(&arr[max], &arr[right]); // 先把大的换到右边// 大的换到右边之后,有可能被换出来的是最小的,需要判断以下// 如果遍历完最小的是当前右边排序的第一个元素// 将min换到那个位置if(min == right){min = max;}swap(&arr[min], &arr[left]);left++;right--;}  
}

稳定性:由于每次寻找的是最小的元素,向前插入时会发生交换操作,当存在两个连续相等元素,破坏了原有的顺序。不稳定的。

比较三种基础排序

冒泡排序(优化后)

  • 最好情况时间复杂度:O(n),本身是有序的,只需要一次遍历。
  • 最坏情况时间复杂度:O(n^2),倒序。
  • 空间复杂度:O(1),只需要一个变量存储需要交换的变量
  • 稳定
    插入排序
  • 最好情况时间复杂度:O(n),本身是有序的,插入的位置也是同样的位置,不变动任何元素
  • 最坏情况时间复杂度:O(n^2),倒序。
  • 空间复杂度:O(1),只需要一个变量存储抽出来的元素
  • 稳定
    选择排序
  • 最好情况时间复杂度:O(n^2),即使数组本身是有序的,每一轮还得将剩余部分依次找完才确定最小的元素
  • 最坏情况时间复杂度:O(n^2)
  • 空间复杂度:每一轮需要记录最小元素位置,空间复杂度为O(1)
  • 不稳定

进阶排序

快速排序

快速排序是冒泡排序的进阶版,由于冒泡排序是对相邻元素进行比较和交换,每次只能移动一个位置,效率相对较低;而快速排序是从两端向中间进行,一轮就可将较小的元素交换到左边,较大的元素交换到右边。

实际上每一轮目的就是将较大的丢到基准右边,较小的丢到基准左边

  • 一开始排序为整个数组
  • 排序之前,以第一个元素作为基准
  • 从最右边向左看,依次将每一个元素与基准元素进行比较,如果该元素比基准元素小,就与左边遍历位置上的元素(一开始为基准元素位置)进行交换,保留右边当前遍历的位置
  • 交换后,转为从左边往右开始遍历元素,如果发现比基准元素大,则与之前保留右边遍历的位置上元素进行交换,同样保留左边当前遍历的位置
  • 当左右遍历撞到一起,本轮快速排序完成,中间的位置元素就是基准元素
  • 以基准位置为中心,划分左右两边,同样方式进行

代码实现

// 快速排序
void QuickSort(int arr[], int start, int end)
{if(start >= end) // 不满足初始位置则返回{return;}int left = start, right = end; // 定义两个指向左右两个端点的指针int pivot = arr[left]; // 预先确定基准点为左端第一个元素while (left < right){while(left < right && arr[right] >= pivot){right--;// 从右往左看}arr[left] = arr[right]; // 比基准值小就放到左边去while (left < right&& arr[left]  <= pivot){left++; // 从左往右看}arr[right] = arr[left]; // 比基准值大就放到右边arr[left] =pivot; //相遇位置即为基准存放的位置}QuickSort(arr, start , left-1); //划分基准左边QuickSort(arr, left+1, end); // 划分基准右边, 再次进行快速排序
}

测试

int main()
{int arr1[]= {9,3,6,3,4,8,1,2};QuickSort(arr1, 0 , 8);for(int i = 0; i < 8 ; ++i){printf("%d ", arr1[i]);}
}

双轴快速排序

快速排序的升级版,双轴快速排序,可对大数组进行。如果遇到数组完全倒序的情况
在这里插入图片描述
每一轮需要完整遍历整个范围,每一轮最大或最小的元素被推向两边,则此完全倒序情况快速排序退化为冒泡排序。为解决这种极端情况,再添加一个基准元素,使得数组可分为三段。
在这里插入图片描述
分为三段后,每轮双轴排序结束后对三段继续进行双轴快速排序。该适用于那些量比较大的数组。

首先取出首元素和尾元素作为两个基准,对其进行比较,若基准1大于基准2,先交换两个基准。
在这里插入图片描述
需要创建三个指针
在这里插入图片描述
从橙色指针所指元素开始进行判断,

  • 小于基准1,那需要先将蓝色指针向后移,把元素交换到蓝色指针那去,然后橙色指针也向后移动
  • 不小于基准1且不大于基准2,直接把橙色指针向前移动即可
  • 大于基准2,需要丢到右边去,先将右边指针左移,不断向前找到一个比基准2小的,进行交换
    橙色指针与绿色指针之间即为待排序区域
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    代码实现:
void swap(int* a, int*b)
{int tmp = *a;*a = *b;*b = tmp;
}void dualPivotQuickSort(int arr[], int start, int end)
{if(start >= end){return; // 结束条件}if(arr[start] > arr[end]) // 首尾两个基准比较{swap(&arr[start], &arr[end]); // 大的换到后面}int pivot1 = arr[start], pivot2 = arr[end]; // 取出两个基准元素int left = start, right = end, mid = left + 1; // 分三个区域,三个指针while (mid < right){if(arr[mid] < pivot1) // mid所指向元素小于基准1,需要放到最左边{swap(&arr[++left], &arr[mid++]); // 和最左边交换,left 和 mid向前移动}else if(arr[mid] <= pivot2) // 不小于基准1但小于基准2,在中间{mid++; // 本身在中间,向前移动以缩小范围}else // 右边的情况{while (arr[--right] > pivot2 && right > mid); // 先移动右边指针,需要右边位置来存放需要换过来的元素if(mid >= right){break; // 剩余元素找完,没有比基准2小的,可直接结束}swap(&arr[mid], &arr[right]); // 还有剩余元素,找到比基准2小的,直接交换   }} swap(&arr[left], &arr[start]); // 基准1与left交换,基准1左边元素都比其小swap(&arr[right],&arr[end]); // 基准2与right交换,基准2右边元素都比其大// 继续对剩下三个区域双轴快速排序dualPivotQuickSort(arr, start,left-1);dualPivotQuickSort(arr, left+1, right-1);dualPivotQuickSort(arr, right+1, end);
}
    dualPivotQuickSort(arr1, 0, 8);for(int i = 0; i < 8 ; ++i){printf("%d ", arr1[i]);}

希尔排序(缩小增量排序)

直接插入排序的进阶版,极端情况会出现让所有已排序元素后移的情况(比如刚好要插入的是一个特别小的元素),为解决这种问题,对整个数组按照步长进行分组,优先比较距离较远的元素。

步长是由一个增量序列,当增量序列一般使用 n 2 、 n 4 、 n 8 . . . 、 1 \frac{n}{2}、\frac{n}{4}、\frac{n}{8}...、1 2n4n8n...1这样的序列。
设数组长度为N,详细过程为:

  1. 求出最初步长,n/2
  2. 整个数组按照步长进行分组,两两一组(n为奇数,第一组有三个元素)
  3. 分别在分组内插入排序
  4. 排序后,将步长/2,重新分组,重复上述步骤,直到步长为1,插入排序最后一遍结束
    在这里插入图片描述
    插入排序后,小的元素尽可能地向前走,缩小步长,4/2=2
    在这里插入图片描述
    代码实现
// 希尔排序
void shellSort(int arr[], int size)
{int delta = size / 2;while (delta >= 1) // 使用之前的插入排序,此时需要考虑分组{for(int i = delta; i < size; ++i) // 从delta开始,前delta个组的第一个元素默认是有序状态{int j = i, tmp = arr[i]; // 依然是把待插入的先抽出来while (j >= delta && arr[j - delta] > tmp) {// 需要按步长往回走,所以是j-delta,j必须大于等于delta才可以,j-delta小于0说明前面没有元素arr[j] = arr[j - delta];j -= delta;}arr[j] = tmp;}delta /= 2; // 分组插排结束之后,再计算步长}
} 
int main()
{int arr[] = {3,5,7,2,9,0,6,1,8,4};shellSort(arr, 10);for(int i = 0 ; i < 10; ++i){printf("%d ", arr[i]);}
}

尽管有循环多次,但时间复杂度比O(n^2)小,小的元素往左靠。希尔排序不稳定,因为按步长分组,有可能相邻得两个相同元素,后者在自己组内被换到前面去。

堆排序

选择排序一种,但能比选择排序更快。
小根堆(小顶堆),对一棵不完全二叉树,树中父亲结点都比孩子结点小;大根堆(大顶堆)树中父亲结点都比孩子节点大。
堆是一棵完全二叉树,数组来表示
在这里插入图片描述
构建一个堆,将一个无序的数组依次输入,最后存放的序列是一个按顺序排放的序列。

但仍需要额外O(n)的空间作为堆,可以对其进一步优化,减少空间上的占用。直接对给定的数组进行堆的构建
设数组长度为N

  • 将给定数组调整为大顶堆
  • 进行N轮选择,每次选择大顶堆顶端元素从数组末尾开始向前存放(交换堆顶和堆的最后一个元素)
  • 交换完成后,重新对堆的根节点进行调整,使其继续满足大顶堆的性质
  • 当N轮结束后,得到从小到大的数组

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/278779.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++中的作用域解析运算符

1. 访问命名空间成员 当我们需要访问某个命名空间中的变量、函数或类型时&#xff0c;可以使用::来指定明确的作用域。 namespace myNamespace {int value 42; }int value 24;int main() {// 使用作用域解析运算符访问命名空间中的变量std::cout << myNamespace::val…

分治法排序:原理与C语言实现

分治法排序&#xff1a;原理与C语言实现 一、分治法与归并排序概述二、归并排序的C语言实现三、归并排序的性能分析四、归并排序的优化 在计算机科学中&#xff0c;分治法是一种解决问题的策略&#xff0c;它将一个难以直接解决的大问题&#xff0c;分割成一些规模较小的相同问…

确保云原生部署中的网络安全

数字环境正在以惊人的速度发展&#xff0c;组织正在迅速采用云原生部署和现代化使用微服务和容器构建的应用程序&#xff08;通常运行在 Kubernetes 等平台上&#xff09;&#xff0c;以推动增长。 无论我们谈论可扩展性、效率还是灵活性&#xff0c;对于努力提供无与伦比的用…

算法——贪心算法

《算法图解》——贪心算法 # 首先创建一个表&#xff0c;包含所覆盖的州 states_needed set([mt,wa,or,id,nv,ut,az]) # 传入一个数组&#xff0c;转换成一个集合#可供选择的广播台清单 stations {} stations[kone] set([id,nv,ut]) #用集合表示想要覆盖的州&#xff0c;且不…

【K8S】docker和K8S(kubernetes)理解?docker是什么?K8S架构、Master节点 Node节点 K8S架构图

docker和K8S理解 一、docker的问世虚拟机是什么&#xff1f;Docker的问世&#xff1f;docker优点及理解 二、Kubernetes-K8SK8S是什么&#xff1f;简单了解K8S架构Master节点Node节点K8S架构图 一、docker的问世 在LXC(Linux container)Linux容器虚拟技术出现之前&#xff0c;业…

C语言黑魔法第三弹——动态内存管理

本文由于排版问题&#xff0c;可能稍显枯燥&#xff0c;但里面知识点非常详细&#xff0c;建议耐心阅读&#xff0c;帮助你更好的理解动态内存管理这一C语言大杀器 进阶C语言中有三个知识点尤为重要&#xff1a;指针、结构体、动态内存管理&#xff0c;这三个知识点决定了我们…

利用textarea和white-space实现最简单的文章编辑器 支持缩进和换行

当你遇到一个非常基础的文章发布和展示的需求&#xff0c;只需要保留换行和空格缩进&#xff0c;你是否会犹豫要使用富文本编辑器&#xff1f;实际上这个用原生的标签两步就能搞定&#xff01; 1.直接用textarea当编辑器 textarea本身就可以保存空格和换行符&#xff0c;示例如…

DockerFile遇到的坑

CMD 命令的坑 dockerfile 中的 CMD 命令在docker run -it 不会执行 CMD 命令。 FROM golang WORKDIR / COPY . ./All-in-one CMD ["/bin/sh","-c","touch /kkk.txt && ls -la"] RUN echo alias ll"ls -la" > ~/.bashrc(不…

一维前缀和一维差分(下篇讲解二维前缀和二维差分)(超详细,python版,其他语言也很轻松能看懂)

本篇博客讲解一维前缀和&#xff0c;一维差分&#xff0c;还会给出一维差分的模板题&#xff0c;下篇博客讲解 二维前缀和&二维差分。 一维前缀和&#xff1a; 接触过算法的小伙伴应该都了解前缀和&#xff0c;前缀和在算法中应用很广&#xff0c;不了解也没有关系&#…

Ubuntu 搭建gitlab服务器,及使用repo管理

一、GitLab安装与配置 GitLab 是一个用于仓库管理系统的开源项目&#xff0c;使用Git作为代码管理工具&#xff0c;并在此基础上搭建起来的Web服务。 1、安装Ubuntu系统&#xff08;这个教程很多&#xff0c;就不展开了&#xff09;。 2、安装gitlab社区版本&#xff0c;有需…

车载电子电器架构 - 网络拓扑

车载电子电器架构 - 网络拓扑 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师 (Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠…

学习笔记Day11:初探Linux

Linux系统初探 Linux系统简介 发行版本Ubuntu/centOS&#xff0c;逻辑一样&#xff0c;都可以用。 服务器 本质是一台远程电脑&#xff0c;大多数服务器是Linux系统&#xff0c;通常使用命令行远程访问而不是桌面操作。LInux服务器允许多用户同时访问。NGS组学测序数据上游…

使用树莓派 结合Python Adafruit驱动OLED屏幕 显示实时视频

关于OLED屏幕的驱动&#xff0c;在之前我已经写过很多篇博文&#xff1a; IIC 协议 和 OLED_oled iic-CSDN博客 香橙派配合IIC驱动OLED & 使用SourceInsight解读源码_香橙派5 驱动屏幕-CSDN博客 这两篇博文都是通过模拟或调用IIC协议来使用C语言驱动OLED屏幕&#xff0c;现…

【Linux】进程---概念---进程---优先级

主页&#xff1a;醋溜马桶圈-CSDN博客 专栏&#xff1a;Linux_醋溜马桶圈的博客-CSDN博客 gitee&#xff1a;mnxcc (mnxcc) - Gitee.com 目录 1.操作系统(Operator System) 1.1 概念 1.2 设计OS的目的 1.3 定位 1.4 如何理解 "管理" 1.5 总结 1.6 系统调用和…

数据可视化-ECharts Html项目实战(3)

在之前的文章中&#xff0c;我们学习了如何创建堆积折线图&#xff0c;饼图以及较难的瀑布图并更改图标标题。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 …

主存中存储单元地址的分配

主存中存储单元地址的分配 为什么写这篇文章? 因为我看书中这部分时&#xff0c;看到下面的计算一下子没反应过来&#xff1a; 知识回顾&#xff08;第1章&#xff09; 计算机系统中&#xff0c;字节是最小的可寻址的存储单位&#xff0c;通常由8个比特&#xff08;bit&…

OpenCV 单目相机标定

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 单目相机的标定过程与双目相机的标定过程很类似,具体过程如下所述: 1、首先我们需要获取一个已知图形的图像(这里我们使用MATLAB所提供的数据)。 2、找到同名像点(匹配点),这里主要是探测黑白格子之间的角点…

鸿蒙Harmony应用开发—ArkTS声明式开发(画布组件:Canvas)

提供画布组件&#xff0c;用于自定义绘制图形。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 不支持。 接口 Canvas(context?: CanvasRenderingContext2D) 从API version 9开始&…

huawei services HK华为云服务

huaweiserviceshk是一种云计算服务&#xff0c;为华为云服务用户提供了多种服务&#xff0c;包括云服务器、数据库、存储、网络等&#xff0c;用户可以根据自己的需求选择不同的服务并支付相应的费用 如何付费呢&#xff0c;这里可以使用441112&#xff0c;点击获取 卡片信息在…

机器人可反向驱动能力与力控架构

反向驱动性是电机传动系统的机械特性&#xff0c;它描述了运动是否可以轻松反转 。特别是&#xff0c;反向驱动能力取决于两个因素&#xff1a;传动运动效率和整体执行器机械阻抗。反向运动中传动装置的低运动效率意味着所施加的外力的大部分被运动反作用力抵消。然而&#xff…