描述
现有试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间):
id | exam_id | tag | difficulty | duration | release_time |
1 | 9001 | SQL | hard | 60 | 2020-01-01 10:00:00 |
2 | 9002 | C++ | hard | 80 | 2020-01-01 10:00:00 |
3 | 9003 | 算法 | hard | 80 | 2020-01-01 10:00:00 |
4 | 9004 | PYTHON | medium | 70 | 2020-01-01 10:00:00 |
试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):
id | uid | exam_id | start_time | submit_time | score |
6 | 1003 | 9001 | 2020-01-02 12:01:01 | 2020-01-02 12:31:01 | 68 |
9 | 1001 | 9001 | 2020-01-02 10:01:01 | 2020-01-02 10:31:01 | 89 |
1 | 1001 | 9001 | 2020-01-01 09:01:01 | 2020-01-01 09:21:59 | 90 |
12 | 1002 | 9002 | 2021-05-05 18:01:01 | (NULL) | (NULL) |
3 | 1004 | 9002 | 2020-01-01 12:01:01 | 2020-01-01 12:11:01 | 60 |
2 | 1003 | 9002 | 2020-01-01 19:01:01 | 2020-01-01 19:30:01 | 75 |
7 | 1001 | 9002 | 2020-01-02 12:01:01 | 2020-01-02 12:43:01 | 81 |
10 | 1002 | 9002 | 2020-01-01 12:11:01 | 2020-01-01 12:31:01 | 83 |
4 | 1003 | 9002 | 2020-01-01 12:01:01 | 2020-01-01 12:41:01 | 90 |
5 | 1002 | 9002 | 2020-01-02 19:01:01 | 2020-01-02 19:32:00 | 90 |
11 | 1002 | 9004 | 2021-09-06 12:01:01 | (NULL) | (NULL) |
8 | 1001 | 9005 | 2020-01-02 12:11:01 | (NULL) | (NULL) |
在物理学及统计学数据计算时,有个概念叫min-max标准化,也被称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数为:
请你将用户作答高难度试卷的得分在每份试卷作答记录内执行min-max归一化后缩放到[0,100]区间,并输出用户ID、试卷ID、归一化后分数平均值;最后按照试卷ID升序、归一化分数降序输出。(注:得分区间默认为[0,100],如果某个试卷作答记录中只有一个得分,那么无需使用公式,归一化并缩放后分数仍为原分数)。
由示例数据结果输出如下:
uid | exam_id | avg_new_score |
1001 | 9001 | 98 |
1003 | 9001 | 0 |
1002 | 9002 | 88 |
1003 | 9002 | 75 |
1001 | 9002 | 70 |
1004 | 9002 | 0 |
解释:高难度试卷有9001、9002、9003;
作答了9001的记录有3条,分数分别为68、89、90,按给定公式归一化后分数为:0、95、100,而后两个得分都是用户1001作答的,因此用户1001对试卷9001的新得分为(95+100)/2≈98(只保留整数部分),用户1003对于试卷9001的新得分为0。最后结果按照试卷ID升序、归一化分数降序输出。
方法一:使用group by聚合函数
#使用group by聚合函数
select
uid,exam_id,ifnull(round(avg((score-min_score)/differ_score)*100,0),min(score)) as avg_new_score
from
(selectexam_id,min(score) as min_score,max(score)-min(score) as differ_scorefromexam_recordwhere submit_time is not null andexam_id in (select exam_id from examination_info where difficulty='hard')group by exam_id
)t1
left join
(select uid,exam_id,scorefromexam_recordwhere submit_time is not null andexam_id in (select exam_id from examination_info where difficulty='hard')
)t2
using(exam_id)
group by uid,exam_id
order by exam_id,avg_new_score desc
方法二:使用窗口函数
# 使用窗口函数
select
uid,exam_id,
round(avg(if(max_score=min_score,score,(score-min_score)/(max_score-min_score)*100)),0) as avg_new_score
from
(selectuid,exam_id,score,max(score) over(partition by exam_id) as max_score,min(score) over(partition by exam_id) as min_scorefromexam_recordwhere submit_time is not null andexam_id in (select exam_id from examination_info where difficulty = 'hard')
)t1
group by uid,exam_id
order by exam_id,avg_new_score desc