Amuse .NET application for stable diffusion

Amuse

github地址:https://github.com/tianleiwu/Amuse

.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system 

Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise

Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
  • Image To Image: Transform images seamlessly using advanced machine learning models.
  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.

Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Getting Started
Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/287251.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CAPL - 如何实现弹窗提示和弹窗操作(续)

目录 函数介绍 openPanel closePanel 代码示例 1、简单的打开关闭panel面板

自动驾驶-如何进行多传感器的融合

自动驾驶-如何进行多传感器的融合 附赠自动驾驶学习资料和量产经验:链接 引言 自动驾驶中主要使用的感知传感器是摄像头和激光雷达,这两种模态的数据都可以进行目标检测和语义分割并用于自动驾驶中,但是如果只使用单一的传感器进行上述工作…

文献速递:文献速递:基于SAM的医学图像分割--SAM-Med3D

Title 题目 SAM-Med3D 01 文献速递介绍 医学图像分析已成为现代医疗保健不可或缺的基石,辅助诊断、治疗计划和进一步的医学研究]。在这一领域中最重要的挑战之一是精确分割体积医学图像。尽管众多方法在一系列目标上展现了值得称赞的有效性,但现有的…

C/C++ 语言中的 ​if...else if...else 语句

C/C 语言中的 ​if...else if...else 语句 1. if statement2. if...else statement3. if...else if...else statementReferences 1. if statement The syntax of the if statement is: if (condition) {// body of if statement }The code inside { } is the body of the if …

javaScript——BFS结合队列求迷宫最短路径

这里推荐先去看下B站这个老师讲的BFS迷宫问题,只用看前五分钟就能懂用BFS队列实现的原理。[POJ] 3984 迷宫问题 BFS_哔哩哔哩_bilibili 问题描述:由m*n的矩阵构成了一个迷宫, 矩阵中为1的元素表示障碍物,不能走,为0表示…

AcWing 830. 单调栈

解题思路 对于将要入栈的元素来说,在对栈进行更新后(即弹出了所有比自己大的元素),此时栈顶元素就是数组中左侧第一个比自己小的元素; 对于将要入栈的元素来说,在对栈进行更新后(即弹出了所有比…

【干货】无源滤波器设计讲解,工作原理+设计步骤

今天给大家分享的是:无源模拟滤波器针对很多入门小白不懂滤波器设计,一些老工程师上班很多年有的也不懂得总结知识点,以及想学习不知道怎么系统学习的这一类人群,前方知识点来袭,请君放心食用~ 在信号处理领域&#x…

Git基础(25):Cherry Pick合并指定commit id的提交

文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中,我们会存在多个分支开发的情况,比如dev,test, prod分支,dev分支在开发新功能,prod作为生产分支已发布。如果某个时候,我们…

基于stm32与TJC3224T124_011串口屏的PID调参器(附完整工程)

电赛在即,每次比赛调PID都是一件比较繁琐的事。每次都要在程序中改完再烧录到板子上,特别耗时。正好最近发现实验室的一块串口屏比较好玩。 于是就做了这个调PID的东西。它可以通过串口直接修改PID的值,从而达到快速调PID的目的。下面我将完整…

论文阅读---VITC----Early Convolutions Help Transformers See Better

论文题目:Early Convolutions Help Transformers See Better 早期的卷积网络帮助transformers性能提升 vit 存在不合格的可优化性,它们对优化器的选择很敏感。相反现代卷积神经网络更容易优化。 vit对优化器的选择[40](AdamW [27] vs. SGD)&#xff0…

CTF题型 nodejs(1) 命令执行绕过典型例题

CTF题型 nodejs(1) 命令执行绕过 文章目录 CTF题型 nodejs(1) 命令执行绕过一.nodejs中的命令执行二.nodejs中的命令绕过1.编码绕过2.拼接绕过3.模板字符串4.Obejct.keys5.反射6.过滤中括号的情况典型例题1.[GFCTF 2021]ez_calc2.[西湖论剑 2022]Node Magical Login 一.nodejs中…

力扣Lc21--- 389. 找不同(java版)-2024年3月26日

1.题目描述 2.知识点 &#xff08;1&#xff09;在这段代码中&#xff1a; // 统计字符串s中每个字符的出现次数for (int i 0; i < s.length(); i) {count[s.charAt(i) - a];}对于字符串s “abcd”&#xff1a; 当 i 0&#xff0c;s.charAt(i) ‘a’&#xff0c;ASCII…

yolov9目标检测可视化图形界面GUI源码

该系统是由微智启软件工作室基于yolov9pyside6开发的目标检测可视化界面系统 运行环境&#xff1a; window python3.8 安装依赖后&#xff0c;运行源码目录下的wzq.py启动 程序提供了ui源文件&#xff0c;可以拖动到Qt编辑器修改样式&#xff0c;然后通过pyside6把ui转成python…

JMeter 如何并发执行 Python 脚本

要在JMeter中并发执行Python脚本&#xff0c;可以使用Jython脚本或通过调用外部Python脚本的方式实现。 使用Jython脚本并发执行Python脚本的步骤&#xff1a; 1、创建一个线程组&#xff1a;在JMeter界面中&#xff0c;右键点击测试计划&#xff0c;选择 “添加” -> “线…

词根词缀基础

一&#xff0e;词根词缀方法&#xff1a; 1. 类似中文的偏旁部首&#xff08;比如“休”单人旁木→一个人靠木头上休息&#xff09; 2. 把单词拆分后&#xff0c;每一个部分都有它自己的意思&#xff0c;拼凑在一起就构成了这个单词的意思 3. 一个规律&#xff0c;适用大部分…

题。。。。

O - 胜利大逃亡(续) 题目分析 bfs状态压缩&#xff08;在bfs的基础上&#xff0c;存储持有不同钥匙时&#xff0c;此点位是否走过的情况&#xff09;&#xff1b; -----状态压缩使用二进制实现&#xff0c;同时通过位运算修改是否转移至另一状态&#xff08;详情见代码及注释…

javaWeb校园二手平台项目

一、系统分析 1.1开发背景 随着全世界互联网技术的不断发展&#xff0c;各种基于互联网技术的网络应用不断涌现,网络技术正在不断的深入人们的生活。人们从Internet上获取信息、享受生活、交流感情、网上工作等。Internet正在迅速改变着人们的生活方式。 经过我国改革开放多年…

中科数安 || 防止公司内部文件资料 \数据外泄,图档透明加密防泄密软件,源代码防泄露系统。

#文件防泄密软件# 中科数安是一家专注于信息安全领域的高科技企业&#xff0c;其提供的防止公司内部文件资料及数据外泄的解决方案主要包括图档透明加密和源代码防泄露系统等核心服务。 中科数安 | 图档、源代码防止外泄系统 PC地址&#xff1a; www.weaem.com 1. 图档透明加…

软考中级 --网络工程师真题试卷 2023下半年

在EIGRP协议中&#xff0c;某个路由器收到了两条路径到达目标网络&#xff0c;路径1的带宽为100Mbps&#xff0c;延迟2ms&#xff0c;路径2的带宽为50Mbps&#xff0c;迟为4ms&#xff0c;如果EIGRP使用带宽和延迟的综合度量标准&#xff0c;那么该路由器选择的最佳路径是(D)。…

记录在项目中引用本地的npm包

1、先把需要的包下载下来&#xff0c;以Photo Sphere Viewer 为引用的npm包、项目以shpereRepo为例子 git clone https://github.com/mistic100/Photo-Sphere-Viewer2、拉下代码后修改之后执行 ./build.sh build.sh #!/usr/bin/env bashyarn run build targetDir"../sh…