文章目录
- FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
- 函数定义
- 使用示例
FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
函数定义
使用 Java 实现 RRF 相关的两个函数:合并结果、过滤结果
import java.util.*;// 搜索结果类型定义
public class SearchDataResponseItem {private String id;private String q;private String a;private List<Score> score;private double rrfScore; // 临时存储RRF分数// 其他字段...// getter和setter方法
}// 分数类型定义
public class Score {private String type;private double value;private int index;// getter和setter方法
}// 搜索结果合并工具类
public class DatasetSearchUtils {/*** RRF搜索结果合并* @param searchResults 搜索结果列表,包含k值和结果列表* @return 合并后的结果*/public static List<SearchDataResponseItem> datasetSearchResultConcat(List<SearchResultGroup> searchResults) {// 过滤空结果searchResults = searchResults.stream().filter(item -> !item.getList().isEmpty()).collect(Collectors.toList());// 处理边界情况if (searchResults.isEmpty()) {return new ArrayList<>();}if (searchResults.size() == 1) {return searchResults.get(0).getList();}// 用Map存储合并结果Map<String, SearchDataResponseItem> resultMap = new HashMap<>();// RRF算法实现for (SearchResultGroup group : searchResults) {int k = group.getK();List<SearchDataResponseItem> list = group.getList();for (int i = 0; i < list.size(); i++) {SearchDataResponseItem data = list.get(i);int rank = i + 1;double score = 1.0 / (k + rank);SearchDataResponseItem record = resultMap.get(data.getId());if (record != null) {// 合并分数List<Score> concatScore = new ArrayList<>(record.getScore());for (Score dataScore : data.getScore()) {Optional<Score> sameScore = concatScore.stream().filter(s -> s.getType().equals(dataScore.getType())).findFirst();if (sameScore.isPresent()) {sameScore.get().setValue(Math.max(sameScore.get().getValue(), dataScore.getValue()));} else {concatScore.add(dataScore);}}// 更新记录record.setScore(concatScore);record.setRrfScore(record.getRrfScore() + score);resultMap.put(data.getId(), record);} else {// 新记录data.setRrfScore(score);resultMap.put(data.getId(), data);}}}// 排序List<SearchDataResponseItem> results = new ArrayList<>(resultMap.values());results.sort((a, b) -> Double.compare(b.getRrfScore(), a.getRrfScore()));// 格式化结果for (int i = 0; i < results.size(); i++) {SearchDataResponseItem item = results.get(i);Optional<Score> rrfScore = item.getScore().stream().filter(s -> s.getType().equals("rrf")).findFirst();if (rrfScore.isPresent()) {rrfScore.get().setValue(item.getRrfScore());rrfScore.get().setIndex(i);} else {Score newScore = new Score();newScore.setType("rrf");newScore.setValue(item.getRrfScore());newScore.setIndex(i);item.getScore().add(newScore);}// 清除临时RRF分数item.setRrfScore(0);}return results;}/*** 按最大Token数过滤结果* @param list 搜索结果列表* @param maxTokens 最大token限制* @return 过滤后的结果*/public static List<SearchDataResponseItem> filterSearchResultsByMaxChars(List<SearchDataResponseItem> list, int maxTokens) {List<SearchDataResponseItem> results = new ArrayList<>();int totalTokens = 0;for (SearchDataResponseItem item : list) {// 注意:这里需要实现countPromptTokens方法int tokens = countPromptTokens(item.getQ() + item.getA());totalTokens += tokens;if (totalTokens > maxTokens + 500) {break;}results.add(item);if (totalTokens > maxTokens) {break;}}// 确保至少返回一条结果if (results.isEmpty() && !list.isEmpty()) {results.add(list.get(0));}return results;}/*** 计算文本的token数量* 注意:这是一个示例实现,实际需要根据具体的分词算法来实现*/private static int countPromptTokens(String text) {// 这里需要实现实际的token计算逻辑// 可以使用各种NLP库或自定义的分词算法return text.length(); // 示例实现}
}// 搜索结果分组类
class SearchResultGroup {private int k;private List<SearchDataResponseItem> list;// getter和setter方法
}
使用示例
// 使用示例
List<SearchResultGroup> searchResults = new ArrayList<>();
// ... 添加搜索结果// 合并结果
List<SearchDataResponseItem> mergedResults = DatasetSearchUtils.datasetSearchResultConcat(searchResults);// 过滤结果
List<SearchDataResponseItem> filteredResults = DatasetSearchUtils.filterSearchResultsByMaxChars(mergedResults, 1500);