【每日一题】2024年3月汇编(上)

3.1【2369】检查数组是否存在有效划分

2369. 检查数组是否存在有效划分icon-default.png?t=N7T8https://leetcode.cn/problems/check-if-there-is-a-valid-partition-for-the-array/

1.这样的判断可以用动态规划来解决,用一个长度为(n+1) 的数组来记录  是否存在有效划分,dp[i] 表示前 i 个元素组成的数组是否至少存在一个有效划分。边界情况 dp[0] 恒为 true而 dp[n] 即为结果。

动态规划的公式为:

这道题目是一个简单的dp,经历了上个月树的一整个月的dfs,bfs的洗礼,盲猜这个月都是dp。

class Solution {
public:bool validPartition(vector<int>& nums) {int n = nums.size();vector<int> dp(n + 1,0);dp[0] = true;for(int i = 1; i <= n; i++){if(i >= 2){dp[i] = dp[i - 2] && validTwo(nums[i - 1],nums[i - 2]);}if(i >= 3){dp[i] = dp[i] || dp[i -3] && validThree(nums[i -3], nums[i -2],nums[i - 1]);}}return dp[n];}bool validTwo(int num1,int num2){return num1 == num2;}bool validThree(int num1, int num2, int num3){return (num1 == num2 && num2 == num3) || (num1 + 1 == num2 && num2 + 1 == num3);}
};

3.2【2368】受限条件下可能达到的节点数目

2368. 受限条件下可到达节点的数目icon-default.png?t=N7T8https://leetcode.cn/problems/reachable-nodes-with-restrictions/

没想到今天的题目又回到了树的遍历问题,和上个月的一道题很像,是一个求邻接表然后进行dfs的题目

  1. 对于lamda表达式:捕获列表(Capture List)[&],这表示以引用的方式捕获外部变量。参数列表(Parameter List)(int x, int f),这是lambda函数接受的两个整数参数。返回类型:这里返回类型为 void,由于使用了 function<void(int,int)> 进行了明确的类型声明。

  2.  lamda表示式定义的第二个参数是为了,遍历的时候不往回找,一直往下找。
  3. 临近表的操作定义二维数组存储即可,做限制的函数一维数组置1即可。
class Solution {
public:int reachableNodes(int n, vector<vector<int>>& edges, vector<int>& restricted) {//邻接表vector<vector<int>> g(n);for(auto &v : edges){g[v[0]].push_back(v[1]);g[v[1]].push_back(v[0]);}//做限制vector<int> isrestricted(n);for(auto &x : restricted){isrestricted[x] = 1;}int cnt = 0; function<void(int,int)> dfs = [&](int x,int f){cnt ++;for(auto &y : g[x]){if(y != f && !isrestricted[y])dfs(y,x);}};dfs(0,-1);return cnt;}
};

3.3【225】用队列实现栈

225. 用队列实现栈icon-default.png?t=N7T8https://leetcode.cn/problems/implement-stack-using-queues/

easy题目,熟悉队列基本操作,还有拓展准备一下一个队列的解法

 方法一:两个队列(O(1))

class MyStack {
public:queue<int> q1;queue<int> q2;MyStack() {}void push(int x) {q2.push(x);while(!q1.empty()){q2.push(q1.front());q1.pop();}swap(q1,q2);}int pop() {int r = q1.front();q1.pop();return r;}int top() {return(q1.front());}bool empty() {return(q1.empty());}
};

*方法二 一个队列(O(n))

queue<int> q1;MyStack() {}  void push(int x) {int n = q1.size();q1.push(x);for(int i = 0; i < n; i++){q1.push(q1.front());q1.pop();}

3.4【232】用栈实现队列

232. 用栈实现队列icon-default.png?t=N7T8https://leetcode.cn/problems/implement-queue-using-stacks/

较为简单,双栈实现队列的push,pop等工作

class MyQueue {
public:stack<int> instack,oustack;MyQueue() {}void push(int x) {instack.push(x);}int pop() {if(oustack.empty()){while(!instack.empty()){oustack.push(instack.top());instack.pop();}}int r =  oustack.top();oustack.pop();return r;}int peek() {if(oustack.empty()){while(!instack.empty()){oustack.push(instack.top());instack.pop();}}return oustack.top();}bool empty() {return(instack.empty() && oustack.empty());}
};/*** Your MyQueue object will be instantiated and called as such:* MyQueue* obj = new MyQueue();* obj->push(x);* int param_2 = obj->pop();* int param_3 = obj->peek();* bool param_4 = obj->empty();*/

3.6【2917】找出数组中的k-or值

2917. 找出数组中的 K-or 值icon-default.png?t=N7T8https://leetcode.cn/problems/find-the-k-or-of-an-array/

题目难以理解什么意思,主要是按照给的范围遍历位运算

由于给定了nums中元素的范围,我们位从1到31遍历,每一次循环右移i位与1按位与,就是最后一位和1与,记录数目。如果说大于给定的k,对于这个第i位,1向左移动i位和ans按位或 。

class Solution {
public:int findKOr(vector<int>& nums, int k) {int ans = 0;for(int i = 0; i < 31; i++)
{int cnt = 0;;for(int num: nums){if(num >> i & 1 ){cnt ++;}}if(cnt >= k){ans |=  1<<i;}
}    
return ans;
}
};

3.8【2834】找出美丽数组的最小和

2834. 找出美丽数组的最小和icon-default.png?t=N7T8https://leetcode.cn/problems/find-the-minimum-possible-sum-of-a-beautiful-array/

作一个贪心,卡住范围,整体思路就不难了

  1. 分析题目,按照贪心,要最小和,所以从1开始,按顺序递增的加,但是到二分之target就不能取了,然后就从target依次往后取。
  2.  根据等差数列求和公式就可以解决
  3. 注意int不行,要给个long long防止溢出
class Solution {
public:int minimumPossibleSum(int n, int target) {const int mod = 1e9 + 7;int m = target / 2;if(n <= m){return (long long)(1 + n) * n / 2 % mod;}else{return ((long long)(1 + m) * m /2 + ((long long)target + target + (n - m) - 1) * (n - m) /2) % mod;}}
};

3.10【299】猜数字游戏

299. 猜数字游戏icon-default.png?t=N7T8https://leetcode.cn/problems/bulls-and-cows/

今天的题目其实就是一个模拟,熟悉数组存储数据个数。

 先把猜对的对应上的数字记录下来,然后如果不对应,用两个数组全部对应,我一开始的思路是先把对应的记录下来,然后删除再去比其他的就要麻烦不少。

用两个数组记录其他的地方出现的数字的个数,最后再通过min,找出猜对了,但是位置不对的个数。

class Solution {
public:string getHint(string secret, string guess) {int bulls = 0;vector<int> cntS(10),cntG(10);for(int i = 0; i < secret.size(); i++){if(secret[i] == guess[i]) {bulls++;}else{++cntG[secret[i] - '0'];++cntS[guess[i] - '0'];}}int cows = 0;for(int i = 0; i < 10;i++){cows += min(cntS[i],cntG[i]);}return to_string(bulls) + 'A' + to_string(cows) + 'B';}
};

3.11【2129】将标题首字母大写

2129. 将标题首字母大写icon-default.png?t=N7T8https://leetcode.cn/problems/capitalize-the-title/

看题目知道是一个模拟题,大小写转换比较经典,如果用c++的话,一句话一句话的模拟会发现确实很麻烦,题解中用到一个l,一个r指向每一个单词的前后端,思路更为清晰

  1.  toupper,tolower大小写字母转换
  2. 整体思路,while大循环,tittle后边加个空格,防止结尾不同处理。先把r移动到单词的最右边 ,判断单词个数是否需要首字母置为大写,再所有的字母置为小写,最后把最后的空格删掉
class Solution {
public:string capitalizeTitle(string title) {int l = 0,r = 0;int n = title.size();title.push_back(' ');while(r < n){while(title[r] != ' '){r ++;}if(r - l > 2){title[l] = toupper(title[l]);++l;}while(l < r){title[l] = tolower(title[l]);++l;}l = r + 1;++r;}title.pop_back();return title;}
};

3.12【1261】在受污染的二叉树中查找元素

1261. 在受污染的二叉树中查找元素icon-default.png?t=N7T8https://leetcode.cn/problems/find-elements-in-a-contaminated-binary-tree/

DFS+哈希表,还原二叉树以后,找target的个数是否大于0
  1.  用DFS还原二叉树,再判断个数,难度不大
class FindElements {
public:unordered_set<int> valSet;void dfs(TreeNode* node,int val){if(!node){return;}node -> val = val;valSet.insert(val);dfs(node -> left,val * 2 + 1);dfs(node -> right,val * 2 + 2);}FindElements(TreeNode* root) {dfs(root,0);}bool find(int target) {return valSet.count(target) > 0;}
};

3.13【2864】最大二进制奇数

2864. 最大二进制奇数icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-odd-binary-number/

复刷指数:0

简单题,直接模拟

class Solution {
public:string maximumOddBinaryNumber(string s) {int sum = 0;for(int i = 0; i < s.size(); i++){if(s[i] == '1'){sum++;}}string s1;for(int i = 0; i < sum - 1 ;i++){s1.push_back('1');}for(int i = 0; i < s.size() - sum; i++){s1.push_back('0');}s1.push_back('1');return s1;}
};

3.14【2789】合并后数组的最大元素

2789. 合并后数组中的最大元素icon-default.png?t=N7T8https://leetcode.cn/problems/largest-element-in-an-array-after-merge-operations/

复刷指数:1

倒叙遍历+贪心。难度不大

  1. 我们从后往前倒序遍历一次数组,依次比较两个相邻的元素,如果两个相邻的元素能够合并,就将其合并。如果不能合并,就继续往前判断。因为这样的操作流程,在比较过程中,靠后的数是所有操作流程可能性中能产生的最大值,而靠前的数,是所有操作流程可能性中能产生的最小值。如果在遍历过程中,比较的结果是不能合并,那么其他任何操作流程都无法合并这两个数。如果可以合并,那我们就贪心地合并,因为这样能使接下来的比较中,靠后的数字尽可能大。

class Solution {
public:long long maxArrayValue(vector<int>& nums) {long long sum = nums.back();for(int i = nums.size() - 2; i >= 0; i--){sum = nums[i] <= sum ? nums[i] + sum : nums[i];}return sum;}
};

3.16【2684】矩阵中移动的最大次数

2684. 矩阵中移动的最大次数icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-number-of-moves-in-a-grid/

两轮遍历,注意限制索引

  1. 如果满足要求就让ans等于列数,如果不满足,就把这个地方设为最大值,后边都不会比他大了
  2.  从第一列开始遍历,因为和前面一列进行比较,这个方法主要是因为搜索过程只能前进不能后退
class Solution {
public:int maxMoves(vector<vector<int>>& grid) {int m = grid.size();int n = grid[0].size();int ans = 0;for(int i = 1; i < n; i++){//列for(int j = 0; j < m; j++){if(grid[j][i] > grid[j][i - 1] || j > 0 && grid[j][i] > grid[j-1][i -1] ||j + 1 < m && grid[j][i] > grid[j + 1][i -1]){//限制索引ans = i;}else{grid[j][i] = INT_MAX;}}}return ans;}
};

3.17【310】最小高度树

310. 最小高度树icon-default.png?t=N7T8https://leetcode.cn/problems/minimum-height-trees/

复刷指数:5

很漂亮的一道题,难度已经是中等题的天花板,是一个从外向内部剥菜的思想,内嵌BFS

 

  1. 核心思想:最矮树的根一定不是入度为1的点(画图看下,很容易证明),把最矮树的叶子节点全部减掉,剩下的仍然是最矮树。所以对一个图,不断的把它的叶子节点减掉,减到最后剩下的就一定是最矮树的根。
  2. 普通思想就是BFS遍历每一个节点,统计每个节点的高度,用map存储起来,查询高度集合中最小的,但是会超时。我们从边缘开始,先找到所有出度为1的节点,然后把所有出度为1的节点进队列,然后不断地bfs,最后找到的就是两边同时向中间靠近的节点,那么这个中间节点就相当于把整个距离二分了,那么它当然就是到两边距离最小的点啦,也就是到其他叶子节点最近的节点了。
class Solution {
public:vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {vector<int> res;if(n == 1){res.push_back(0);return res;}
//      建立度的表vector<int> degree(n,0);vector<vector<int>> map (n,vector<int>());for(auto &edge : edges){degree[edge[0]]++;degree[edge[1]]++;map[edge[0]].push_back(edge[1]);map[edge[1]].push_back(edge[0]);}
//      建立队列,把度为1的点扔进去开始剥皮queue<int> q;for(int i = 0; i < n; i++){if(degree[i] == 1) {q.push(i);}}while(!q.empty()){res.clear();//我们每次要清空,这样最后就剩下最小高度树了int size = q.size();for(int i = 0; i < size; i++){int cur = q.front();q.pop();res.push_back(cur);//把所有当前节点加入结果集vector<int> neighbors = map[cur];//用一个数组接一下//经典BFSfor(int neighbor : neighbors){degree[neighbor] --;if(degree[neighbor] == 1){q.push(neighbor);}}}}return res;}
};

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/289566.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端学习笔记 | Node.js

一、Node.js入门 1、什么是Node.js 定义&#xff1a;是跨平台JS运行环境&#xff08;可以独立执行JS的环境&#xff09;作用&#xff1a; 编写数据接口&#xff0c;提供网页资源功能等等前端工程化&#xff1a;为后续学Vue和React等框架做铺垫 2、Node.js为何能执行JS&#xff…

思维升级之路:观察思维深层,解锁认知新境界

目录 一、观察我们的思维习惯 二、人类有哪些思维方法 三、为什么要多使用归纳推理而不是演绎推理 四、转变思维的关键 - 觉察 怎么提升自身的认知水平&#xff1f;这篇文章里&#xff0c;作者尝试对思维模式这件事做出探讨&#xff0c;一起来看看&#xff0c;或许可以帮你…

JUC内容概述

复习概念 Sleep和Wait的区别 Sleep是Thread的静态方法&#xff0c;wait是Object的方法&#xff0c;任何对象实例都可以使用sleep不会释放锁&#xff0c;他也不需要占用锁&#xff0c;暂停。wait会释放锁&#xff0c;但是调用他的前提是线程占有锁他们都可以被Interrupted方法…

Gartner 公布 2024 年八大网络安全预测

近日&#xff0c;Gartner 安全与风险管理峰会在悉尼举行&#xff0c;旨在探讨网络安全的发展前景。 本次峰会&#xff0c;Gartner 公布了 2024 年及以后的八大网络安全预测。 Gartner 研究总监 Deepti Gopal 表示&#xff0c;随着 GenAI 的不断发展&#xff0c;一些长期困扰网…

力扣● 503.下一个更大元素II ● 42. 接雨水

503.下一个更大元素II 与496.下一个更大元素 I的不同是要循环地搜索元素的下一个更大的数。那么主要是对于遍历结束后&#xff0c;单调栈里面剩下的那些元素。 如果直接把两个数组拼接在一起&#xff0c;然后使用单调栈求下一个最大值就可以。 代码实现的话&#xff0c;不用直…

RHCE-3-远程登录服务

简介 概念 远程连接服务器通过文字或图形接口方式来远程登录系统&#xff0c;让你在远程终端前登录linux主机以取得可操作主机接口&#xff08;shell&#xff09;&#xff0c;而登录后的操作感觉就像是坐在系统前面一样 功能: 分享主机的运算能力 服务器类型&#xff1a;有限…

hcia datacom课程学习(4):ICMP与ping命令

1.什么是ICMP ICMP是ip协议的一部分&#xff0c;常用的ping命令就是基于icmp协议的。 在防火墙策略中也能看到ICMP&#xff0c;如果将其禁用&#xff0c;那么其他主机就ping不通该主机了 2. ICMP数据报 2.1数据报构成 ICMP协议的报文包含在IP数据报的数据部分&#xff0c; …

from_pretrained 做了啥

transformers的三个核心抽象类是Config, Tokenizer和Model&#xff0c;这些类根据模型种类的不同&#xff0c;派生出一系列的子类。构造这些派生类的对象也很简单&#xff0c;transformers为这三个类都提供了自动类型&#xff0c;即AutoConfig, AutoTokenizer和AutoModel。三个…

力扣 718. 最长重复子数组

题目来源&#xff1a;https://leetcode.cn/problems/maximum-length-of-repeated-subarray/description/ C题解&#xff08;思路来源代码随想录&#xff09;&#xff1a;动态规划 确定dp数组&#xff08;dp table&#xff09;以及下标的含义。dp[i][j] &#xff1a;以下标i - …

【数据结构与算法】判断字符串是否括号匹配

题目 一个字符串 s 可能包含 { } ( ) [ ] 三种括号判断 s 是否是括号匹配的如(a{b}c) 匹配&#xff0c;而 {a(b 或 {a(b}c) 不匹配 栈 先进后出API&#xff1a; push pop length相关的&#xff1a;队列、堆 栈和数组的关系或区别 栈是一种逻辑结构&#xff0c;理论模型&am…

c语言编译和链接

一个.c源文件是如何经过处理变成可执行的.exe文件&#xff1f; 这其中经过了编译和链接两个大过程。总的来讲&#xff0c;就是每个源文件经过编译后生成对应地目标文件&#xff0c;然后所有的目标文件和所引用的标准库链接&#xff0c;形成了.exe文件。具体是怎样&#xff0c;…

TTS 文本转语音模型综合简述

本文参考文献&#xff1a; [1] Kaur N, Singh P. Conventional and contemporary approaches used in text ot speech synthesis: A review[J]. Artificial Intelligence Review, 2023, 56(7): 5837-5880. [2] TTS | 一文了解语音合成经典论文/最新语音合成论文篇【20240111更新…

代码随想录算法训练营第二十二天|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

代码随想录算法训练营第二十二天|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点 35.二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有…

2024 ccfcsp认证打卡 2023 03 01 田地丈量

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);int n in.nextInt(); // 输入 n&#xff0c;表示矩形的数量int a in.nextInt(); // 输入 a&#xff0c;表示整个区域的长度int b in.nextInt()…

Git 常用命令速查

Git 是一个分布式版本控制系统&#xff0c;用于管理代码和其他文件。它允许您跟踪代码的更改&#xff0c;并在必要时回滚到以前的版本。 本文将介绍一些 Git 常用命令&#xff0c;帮助您快速上手 Git。 初始化 Git 仓库 git init添加文件到暂存区 git add <file_name>…

superset 二开增加 flink 数据源连接通过flink sql 查询数据

前言 superset 目前还不支持 flink 的数据源连接&#xff0c;目前我们公司在探索使用数据湖那一套东西&#xff1a; 使用 flink 作为计算引擎使用 paimon oss对象存储对接 flink 作为底层存储使用 superset 通过 flink gateway 查询 paimon 数据形成报表 增加flink数据源 …

C++零基础入门学习视频课程

教程介绍 本专题主要讲解C基础入门学习&#xff0c;所以不会涉及很深入的语法和机制。但会让你整体多面的了解和学习C的核心内容&#xff0c;快速学习使用C&#xff0c;我们的目标是先宏观整体把握&#xff0c;在深入各个击破&#xff01; 学习地址 链接&#xff1a;https:/…

简单谈谈什么是块存储?

块存储是最简单的数据存储形式&#xff0c;通常用于存储区域网络(SAN) 或 云存储 设置。文件存储在固定大小的块中&#xff0c;可以更轻松地访问文件以进行快速或频繁的编辑。虽然更复杂且成本更高&#xff0c;但存储在此类系统中的数据可以轻松访问&#xff0c;而不会影响操作…

如何在Win10使用IIS服务搭建WebDAV网站并实现无公网IP访问内网文件内容

文章目录 前言1. 安装IIS必要WebDav组件2. 客户端测试3. 使用cpolar内网穿透&#xff0c;将WebDav服务暴露在公网3.1 安装cpolar内网穿透3.2 配置WebDav公网访问地址 4. 映射本地盘符访问 前言 在Windows上如何搭建WebDav&#xff0c;并且结合cpolar的内网穿透工具实现在公网访…

docker 的八大技术架构(图解)

docker 的八大技术架构 单机架构 概念&#xff1a; 应用服务和数据库服务公用一台服务器 出现背景&#xff1a; 出现在互联网早期&#xff0c;访问量比较小&#xff0c;单机足以满足需求 架构优缺点&#xff1a; 优点&#xff1a;部署简单&#xff0c;成本低 缺点&#xff1…