黑马点评项目笔记 II

基于Stream的消息队列

stream是一种数据类型,可以实现一个功能非常完善的消息队列

key:队列名称
nomkstream:如果队列不存在是否自动创建,默认创建
maxlen/minid:设置消息队列的最大消息数量
*|ID 唯一id:时间戳-递增数字
field value:消息体:键值对

 XREAD 命令特点:消息可回溯,一个消息可以被多个消费者读取,可以阻塞读取,有消息漏读风险

消费者组

 

 特点:小费可回溯,消费者争抢消息,加快消费速度,可以阻塞读取,没有漏读风险,消息确认机制。

实现:

创建一个消费者组

XGROUP CREATE stream.orders g1 0 MKSTREAM //创建队列和消费者组

 最终版秒杀代码

@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {@Resourceprivate ISeckillVoucherService seckillVoucherService;@Resourceprivate RedisIdWorker redisIdWorker;@Resourceprivate RedissonClient redissonClient;@Resourceprivate StringRedisTemplate stringRedisTemplate;private static final DefaultRedisScript<Long> SECKILL_SCRIPT;static {SECKILL_SCRIPT = new DefaultRedisScript<>();SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));SECKILL_SCRIPT.setResultType(Long.class);}private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();@PostConstructprivate void init() {SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());}private class VoucherOrderHandler implements Runnable {@Overridepublic void run() {while (true) {try {// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(Consumer.from("g1", "c1"), // 组名和消费者名StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)), //创建空的,读一个,阻塞两秒钟StreamOffset.create("stream.orders", ReadOffset.lastConsumed()) // 消息队列的名字和读取标识);// 2.判断订单信息是否为空if (list == null || list.isEmpty()) {// 如果为null,说明没有消息,继续下一次循环continue;}// 解析数据MapRecord<String, Object, Object> record = list.get(0);Map<Object, Object> value = record.getValue();VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);// 3.创建订单createVoucherOrder(voucherOrder);// 4.确认消息 XACKstringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());} catch (Exception e) {log.error("处理订单异常", e);handlePendingList();}}}private void handlePendingList() {while (true) {try {// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(Consumer.from("g1", "c1"),StreamReadOptions.empty().count(1),StreamOffset.create("stream.orders", ReadOffset.from("0")));// 2.判断订单信息是否为空if (list == null || list.isEmpty()) {// 如果为null,说明没有异常消息,结束循环break;}// 解析数据MapRecord<String, Object, Object> record = list.get(0);Map<Object, Object> value = record.getValue();VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);// 3.创建订单createVoucherOrder(voucherOrder);// 4.确认消息 XACKstringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());} catch (Exception e) {log.error("处理订单异常", e);}}}}private void createVoucherOrder(VoucherOrder voucherOrder) {Long userId = voucherOrder.getUserId();Long voucherId = voucherOrder.getVoucherId();// 创建锁对象RLock redisLock = redissonClient.getLock("lock:order:" + userId);// 尝试获取锁boolean isLock = redisLock.tryLock();// 判断if (!isLock) {// 获取锁失败,直接返回失败或者重试log.error("不允许重复下单!");return;}try {// 5.1.查询订单int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();// 5.2.判断是否存在if (count > 0) {// 用户已经购买过了log.error("不允许重复下单!");return;}// 6.扣减库存boolean success = seckillVoucherService.update().setSql("stock = stock - 1") // set stock = stock - 1.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0.update();if (!success) {// 扣减失败log.error("库存不足!");return;}// 7.创建订单save(voucherOrder);} finally {// 释放锁redisLock.unlock();}}@Overridepublic Result seckillVoucher(Long voucherId) {// 获取用户Long userId = UserHolder.getUser().getId();// 获取订单idlong orderId = redisIdWorker.nextId("order");// 1.执行lua脚本Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,Collections.emptyList(),voucherId.toString(), userId.toString(), String.valueOf(orderId));int r = result.intValue();// 2.判断结果是否为0if (r != 0) {// 2.1.不为0 ,代表没有购买资格return Result.fail(r == 1 ? "库存不足" : "不能重复下单");}// 3.返回订单idreturn Result.ok(orderId);}
}
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then-- 3.2.库存不足,返回1return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then-- 3.3.存在,说明是重复下单,返回2return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

探店达人

完善点赞功能:同一个用户只能点赞一次再点就取消,如果点赞会高亮

  

@Service
public class BlogServiceImpl extends ServiceImpl<BlogMapper, Blog> implements IBlogService {@Resourceprivate IUserService userService;@Resourceprivate StringRedisTemplate stringRedisTemplate;@Resourceprivate IFollowService followService;@Overridepublic Result queryHotBlog(Integer current) {// 根据用户查询Page<Blog> page = query().orderByDesc("liked").page(new Page<>(current, SystemConstants.MAX_PAGE_SIZE));// 获取当前页数据List<Blog> records = page.getRecords();// 查询用户records.forEach(blog -> {this.queryBlogUser(blog);this.isBlogLiked(blog);});return Result.ok(records);}@Overridepublic Result queryBlogById(Long id) {// 1.查询blogBlog blog = getById(id);if (blog == null) {return Result.fail("笔记不存在!");}// 2.查询blog有关的用户queryBlogUser(blog);// 3.查询blog是否被点赞isBlogLiked(blog);return Result.ok(blog);}private void isBlogLiked(Blog blog) {// 1.获取登录用户UserDTO user = UserHolder.getUser();if (user == null) {// 用户未登录,无需查询是否点赞return;}Long userId = user.getId();// 2.判断当前登录用户是否已经点赞String key = "blog:liked:" + blog.getId();Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());blog.setIsLike(score != null);}@Overridepublic Result likeBlog(Long id) {// 1.获取登录用户Long userId = UserHolder.getUser().getId();// 2.判断当前登录用户是否已经点赞String key = BLOG_LIKED_KEY + id;Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());if (score == null) {// 3.如果未点赞,可以点赞// 3.1.数据库点赞数 + 1boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();// 3.2.保存用户到Redis的set集合  zadd key value scoreif (isSuccess) {stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());}} else {// 4.如果已点赞,取消点赞// 4.1.数据库点赞数 -1boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();// 4.2.把用户从Redis的set集合移除if (isSuccess) {stringRedisTemplate.opsForZSet().remove(key, userId.toString());}}return Result.ok();}@Overridepublic Result queryBlogLikes(Long id) {String key = BLOG_LIKED_KEY + id;// 1.查询top5的点赞用户 zrange key 0 4Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);if (top5 == null || top5.isEmpty()) {return Result.ok(Collections.emptyList());}// 2.解析出其中的用户idList<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());String idStr = StrUtil.join(",", ids);// 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)// mybatis plus提供自定义查询List<UserDTO> userDTOS = userService.query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list().stream().map(user -> BeanUtil.copyProperties(user, UserDTO.class)).collect(Collectors.toList());// 4.返回return Result.ok(userDTOS);}@Overridepublic Result saveBlog(Blog blog) {// 1.获取登录用户UserDTO user = UserHolder.getUser();blog.setUserId(user.getId());// 2.保存探店笔记boolean isSuccess = save(blog);if(!isSuccess){return Result.fail("新增笔记失败!");}// 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();// 4.推送笔记id给所有粉丝for (Follow follow : follows) {// 4.1.获取粉丝idLong userId = follow.getUserId();// 4.2.推送String key = FEED_KEY + userId;stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());}// 5.返回idreturn Result.ok(blog.getId());}@Overridepublic Result queryBlogOfFollow(Long max, Integer offset) {// 1.获取当前用户Long userId = UserHolder.getUser().getId();// 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset countString key = FEED_KEY + userId;Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key, 0, max, offset, 2);// 3.非空判断if (typedTuples == null || typedTuples.isEmpty()) {return Result.ok();}// 4.解析数据:blogId、minTime(时间戳)、offsetList<Long> ids = new ArrayList<>(typedTuples.size());long minTime = 0; // 2int os = 1; // 2for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2// 4.1.获取idids.add(Long.valueOf(tuple.getValue()));// 4.2.获取分数(时间戳)long time = tuple.getScore().longValue();if(time == minTime){os++;}else{minTime = time;os = 1;}}// 5.根据id查询blogString idStr = StrUtil.join(",", ids);List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();for (Blog blog : blogs) {// 5.1.查询blog有关的用户queryBlogUser(blog);// 5.2.查询blog是否被点赞isBlogLiked(blog);}// 6.封装并返回ScrollResult r = new ScrollResult();r.setList(blogs);r.setOffset(os);r.setMinTime(minTime);return Result.ok(r);}private void queryBlogUser(Blog blog) {Long userId = blog.getUserId();User user = userService.getById(userId);blog.setName(user.getNickName());blog.setIcon(user.getIcon());}
}

好友关注

共同关注:查交集(Set)

@Service
public class FollowServiceImpl extends ServiceImpl<FollowMapper, Follow> implements IFollowService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Resourceprivate IUserService userService;@Overridepublic Result follow(Long followUserId, Boolean isFollow) {// 1.获取登录用户Long userId = UserHolder.getUser().getId();String key = "follows:" + userId;// 1.判断到底是关注还是取关if (isFollow) {// 2.关注,新增数据Follow follow = new Follow();follow.setUserId(userId);follow.setFollowUserId(followUserId);boolean isSuccess = save(follow);if (isSuccess) {// 把关注用户的id,放入redis的set集合 sadd userId followerUserIdstringRedisTemplate.opsForSet().add(key, followUserId.toString());}} else {// 3.取关,删除 delete from tb_follow where user_id = ? and follow_user_id = ?boolean isSuccess = remove(new QueryWrapper<Follow>().eq("user_id", userId).eq("follow_user_id", followUserId));if (isSuccess) {// 把关注用户的id从Redis集合中移除stringRedisTemplate.opsForSet().remove(key, followUserId.toString());}}return Result.ok();}@Overridepublic Result isFollow(Long followUserId) {// 1.获取登录用户Long userId = UserHolder.getUser().getId();// 2.查询是否关注 select count(*) from tb_follow where user_id = ? and follow_user_id = ?Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();// 3.判断return Result.ok(count > 0);}@Overridepublic Result followCommons(Long id) {// 1.获取当前用户Long userId = UserHolder.getUser().getId();String key = "follows:" + userId;// 2.求交集String key2 = "follows:" + id;Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key, key2);if (intersect == null || intersect.isEmpty()) {// 无交集return Result.ok(Collections.emptyList());}// 3.解析id集合List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());// 4.查询用户List<UserDTO> users = userService.listByIds(ids).stream().map(user -> BeanUtil.copyProperties(user, UserDTO.class)).collect(Collectors.toList());return Result.ok(users);}
}

关注推送

 

拉模式:读扩散:每次都要获取消息然后根据时间戳进行排序,延迟

推模式:写扩散:要把消息写给所有人,内存占用高

推拉结合模式:读写混合:

普通人发消息,由于粉丝比较少,所以直接推模式塞进去
大V发消息,首先要区分普通粉丝和活跃粉丝,对于普通粉丝采用拉模式,活跃粉丝推模式

本项目采用推模式!

List里面只能角标查询,而Sorted支持按照score值范围查询,支持滚动分页

 

推送到粉丝收件箱

@Overridepublic Result saveBlog(Blog blog) {// 1.获取登录用户UserDTO user = UserHolder.getUser();blog.setUserId(user.getId());// 2.保存探店笔记boolean isSuccess = save(blog);if(!isSuccess){return Result.fail("新增笔记失败!");}// 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();// 4.推送笔记id给所有粉丝for (Follow follow : follows) {// 4.1.获取粉丝idLong userId = follow.getUserId();// 4.2.推送String key = FEED_KEY + userId;stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());}// 5.返回idreturn Result.ok(blog.getId());}

滚动分页 

滚动分页查询参数:
max:第一次查询时为当前时间戳 | 上一次查询的最小时间戳
min:0
offset:第一次直接0 | 在上一次的结果中,与最小值一样的元素的个数
count:3(查询条数)

@Data
public class ScrollResult {private List<?> list;private Long minTime;private Integer offset;
}
@Overridepublic Result queryBlogOfFollow(Long max, Integer offset) {// 1.获取当前用户Long userId = UserHolder.getUser().getId();// 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset countString key = FEED_KEY + userId;// 滚动分页查询Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key, 0, max, offset, 2);// 3.非空判断if (typedTuples == null || typedTuples.isEmpty()) {return Result.ok();}// 4.解析数据:blogId、minTime(时间戳)、offsetList<Long> ids = new ArrayList<>(typedTuples.size());long minTime = 0; // 2// 判断重复int os = 1; // 2for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2// 4.1.获取idids.add(Long.valueOf(tuple.getValue()));// 4.2.获取分数(时间戳)long time = tuple.getScore().longValue();if(time == minTime){os++;}else{minTime = time;os = 1;}}// 5.根据id查询blog 不能用listByids,要用orderbyString idStr = StrUtil.join(",", ids);List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();for (Blog blog : blogs) {// 5.1.查询blog有关的用户queryBlogUser(blog);// 5.2.查询blog是否被点赞isBlogLiked(blog);}// 6.封装并返回ScrollResult r = new ScrollResult();r.setList(blogs);r.setOffset(os);r.setMinTime(minTime);return Result.ok(r);}

附近商户

 导入店铺数据

 @Testvoid loadShopData() {// 1.查询店铺信息List<Shop> list = shopService.list();// 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));// 3.分批完成写入Redisfor (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {// 3.1.获取类型idLong typeId = entry.getKey();String key = SHOP_GEO_KEY + typeId;// 3.2.获取同类型的店铺的集合List<Shop> value = entry.getValue();List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());// 3.3.写入redis GEOADD key 经度 纬度 memberfor (Shop shop : value) {// stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());locations.add(new RedisGeoCommands.GeoLocation<>(shop.getId().toString(),new Point(shop.getX(), shop.getY())));}stringRedisTemplate.opsForGeo().add(key, locations);}}
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {// 1.判断是否需要根据坐标查询if (x == null || y == null) {// 不需要坐标查询,按数据库查询Page<Shop> page = query().eq("type_id", typeId).page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));// 返回数据return Result.ok(page.getRecords());}// 2.计算分页参数int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;int end = current * SystemConstants.DEFAULT_PAGE_SIZE;// 3.查询redis、按照距离排序、分页。结果:shopId、distanceString key = SHOP_GEO_KEY + typeId;GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE.search(key,GeoReference.fromCoordinate(x, y),new Distance(5000),RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end));// 4.解析出idif (results == null) {return Result.ok(Collections.emptyList());}List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();if (list.size() <= from) {// 没有下一页了,结束return Result.ok(Collections.emptyList());}// 4.1.截取 from ~ end的部分List<Long> ids = new ArrayList<>(list.size());Map<String, Distance> distanceMap = new HashMap<>(list.size());list.stream().skip(from).forEach(result -> {// 4.2.获取店铺idString shopIdStr = result.getContent().getName();ids.add(Long.valueOf(shopIdStr));// 4.3.获取距离Distance distance = result.getDistance();distanceMap.put(shopIdStr, distance);});// 5.根据id查询ShopString idStr = StrUtil.join(",", ids);List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();for (Shop shop : shops) {shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());}// 6.返回return Result.ok(shops);}
}

用户签到

位图BitMap:

 

 @Overridepublic Result sign() {// 1.获取当前登录用户Long userId = UserHolder.getUser().getId();// 2.获取日期LocalDateTime now = LocalDateTime.now();// 3.拼接keyString keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));String key = USER_SIGN_KEY + userId + keySuffix;// 4.获取今天是本月的第几天int dayOfMonth = now.getDayOfMonth();// 5.写入Redis SETBIT key offset 1stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);return Result.ok();}

签到统计

@Overridepublic Result signCount() {// 1.获取当前登录用户Long userId = UserHolder.getUser().getId();// 2.获取日期LocalDateTime now = LocalDateTime.now();// 3.拼接keyString keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));String key = USER_SIGN_KEY + userId + keySuffix;// 4.获取今天是本月的第几天int dayOfMonth = now.getDayOfMonth();// 5.获取本月截止今天为止的所有的签到记录,返回的是一个十进制的数字 BITFIELD sign:5:202203 GET u14 0List<Long> result = stringRedisTemplate.opsForValue().bitField(key,BitFieldSubCommands.create().get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0));if (result == null || result.isEmpty()) {// 没有任何签到结果return Result.ok(0);}Long num = result.get(0);if (num == null || num == 0) {return Result.ok(0);}// 6.循环遍历int count = 0;while (true) {// 6.1.让这个数字与1做与运算,得到数字的最后一个bit位  // 判断这个bit位是否为0if ((num & 1) == 0) {// 如果为0,说明未签到,结束break;}else {// 如果不为0,说明已签到,计数器+1count++;}// 把数字右移一位,抛弃最后一个bit位,继续下一个bit位num  >>>= 1;}return Result.ok(count);}

VU统计

 

@Testvoid testHyperLogLog() {String[] values = new String[1000];int j = 0;for (int i = 0; i < 1000000; i++) {j = i % 1000;values[j] = "user_" + i;if(j == 999){// 发送到RedisstringRedisTemplate.opsForHyperLogLog().add("hl2", values);}}// 统计数量Long count = stringRedisTemplate.opsForHyperLogLog().size("hl2");System.out.println("count = " + count);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/293834.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

200个有趣的HTML前端游戏项目合集(持续更新中)

&#x1f482; 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】&#x1f91f; 一站式轻松构建小程序、Web网站、移动应用&#xff1a;&#x1f449;注册地址&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交…

Docker工作流

1.工作流 开发应用编写Dockerfile构建Docker镜像运行Docker容器测试应用发布镜像到Hub迭代更新镜像 2.开发应用 首先你需要创建一个应用&#xff0c;这个应用可以是后端应用或者前端应用&#xff0c;任何语言都可以。 比如&#xff1a;我使用IDEA 创建一个Java后端应用&…

【C++庖丁解牛】默认成员函数

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 前言1. 构造函数1.1 概念…

云手机:实现便携与安全的双赢

随着5G时代的到来&#xff0c;云手机在各大游戏、直播和新媒体营销中扮演越来越重要的角色。它不仅节约了成本&#xff0c;提高了效率&#xff0c;而且在边缘计算和云技术逐渐成熟的背景下&#xff0c;展现出了更大的发展机遇。 云手机的便携性如何&#xff1f; 云手机的便携性…

【嵌入式智能产品开发实战】(十二)—— 政安晨:通过ARM-Linux掌握基本技能【C语言程序的安装运行】

目录 程序的安装 程序安装的本质 在Linux下制作软件安装包 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 嵌入式智能产品开发实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xf…

在 Windows 11 上安装 MongoDB

MongoDB 是一个流行的 NoSQL 数据库&#xff0c;它提供了灵活的数据存储方案&#xff0c;而 MongoDB Compass 则是一个可视化管理工具&#xff0c;可以更轻松地与 MongoDB 数据库交互和管理。在本文中&#xff0c;我们将介绍如何在 Windows 11 上安装 MongoDB&#xff0c;并配置…

Dimitra:基于区块链、AI 等前沿技术重塑传统农业

根据 2023 年联合国粮食及农业组织&#xff08;FAO&#xff09;、国际农业发展基金&#xff08;IFAD&#xff09;等组织联合发布的《世界粮食安全和营养状况》报告显示&#xff0c;目前全球约有 7.35 亿饥饿人口&#xff0c;远高于 2019 年的 6.13 亿&#xff0c;这意味着农业仍…

C++教学——从入门到精通 6.ASCII码与字符型

如何把小写字母转换成大写字母呢&#xff1f; 这个问题问的好&#xff0c;首先我们要新学一个类型——char 这个类型就是字符型 再来说说ASCII码 给大家举几个例子 空格————32 0————48 9————57 A————65 Z————90 a————97 z————122 我们…

HarmonyOS 应用开发之线性容器

线性容器实现能按顺序访问的数据结构&#xff0c;其底层主要通过数组实现&#xff0c;包括ArrayList、Vector、List、LinkedList、Deque、Queue、Stack七种。 线性容器&#xff0c;充分考虑了数据访问的速度&#xff0c;运行时&#xff08;Runtime&#xff09;通过一条字节码指…

Django 仿博客园练习

数据库搭建 部分功能介绍 【一】注册 &#xff08;1&#xff09;效果显示、简单简介 主要亮点 结合了layui和forms组件默认头像可以随着性别的选择发生改变自定义头像可以实时更新显示forms组件报错信息可以局部刷新显示在对应框体下面 没有直接使用layui的前端验证后端验证…

C++教学——从入门到精通 5.单精度实数float

众所周知&#xff0c;三角形的面积公式是(底*高)/2 那就来做个三角形面积计算器吧 到吗如下 #include"bits/stdc.h" using namespace std; int main(){int a,b;cin>>a>>b;cout<<(a*b)/2; } 这不对呀&#xff0c;明明是7.5而他却是7&#xff0c;…

商城业务-检索服务

文章目录 前言一、搭建页面环境1.1 静态界面搭建1.2 Nginx 动静分离1.3 Windows 上传文件1.4 引入 thymeleaf 依赖1.5 Nginx 反向代理1.4 Nginx 配置1.5 gateway 网关配置 二、调整页面跳转2.1 引入依赖2.2 页面跳转 三、检索查询参数模型分析抽取3.1 检索业务分析3.2 检索语句…

【上海大学计算机组成原理实验报告】二、数据传送实验

一、实验目的 了解在模型机中算术、逻辑运算单元的控制方法。学习机器语言程序的运行过程。通过人工译码&#xff0c;加深对译码器基本工作原理的理解。 二、实验原理 根据实验指导书的相关内容&#xff0c;本次实验所要用的CP226实验仪在手动方式下&#xff0c;运算功能通过…

记录何凯明在MIT的第一堂课:神经网络发展史

https://www.youtube.com/watch?vZ5qJ9IxSuKo 目录 表征学习 主要特点&#xff1a; 方法和技术&#xff1a; LeNet 全连接层​ 主要特点&#xff1a; 主要特点&#xff1a; 网络结构&#xff1a; AlexNet 主要特点&#xff1a; 网络结构&#xff1a; Sigmoid Re…

碳素光线疗法与宠物健康

碳素光线与宠物健康 生息在地球上的所有动物、在自然太阳光奇妙的作用下、生长发育。太阳光的能量使它们不断进化、繁衍种族。现在、生物能够生存、全仰仗于太阳的光线。太阳光线中、包含有动物健康所需要的极为重要的波长。因此、和户外饲养的动物相比、在室内喂养的观赏动物、…

全套医院手术麻醉系统源码 人工智能麻醉系统源码 医疗管理系统源码

全套医院手术麻醉系统源码 人工智能麻醉系统源码 医疗管理系统源码 手术麻醉临床信息系统有着完善的临床业务功能&#xff0c;能够涵盖整个围术期的工作&#xff0c;能够采集、汇总、存储、处理、展现所有的临床诊疗资料。通过该系统的实施&#xff0c;能够规范麻醉科的工作流…

实现offsetof宏以及交换一个整数二进制奇偶位的宏

目录 1. offsetof宏2. 交换奇偶位 1. offsetof宏 我们想用宏来实现offsetof函数,首先要了解这个函数的用法。 1.1 offsetof函数的介绍及用法 &#xff08;1&#xff09;功能&#xff1a;用来计算结构体中一个成员在该结构体中的相对起始位置的偏移量&#xff0c;单位是字节。 …

ClamAV:Linux服务器杀毒扫描工具

Clam AntiVirus&#xff08;ClamAV&#xff09;是免费而且开放源代码的防毒软件&#xff0c;软件与病毒码的更新皆由社群免费发布。ClamAV在命令行下运行&#xff0c;它不将杀毒作为主要功能&#xff0c;默认只能查出系统内的病毒&#xff0c;但是无法清除。需要用户自行对病毒…

异常,Lambda表达式

文章目录 异常介绍存在形式程序中异常发生后的第一反应体系JVM的默认处理方案处理方式声明 throws概述格式抛出 throw格式注意意义 throws和throw的区别 捕获 try,catch介绍格式执行方式多异常捕获处理意义 如何选择用哪个 Throwable类介绍常用方法 自定义异常概述实现步骤范例…

手写Spring框架(上)浅出

手写Spring框架 准备工作Spring启动和扫描逻辑实现依赖注入的实现Aware回调模拟实现和初始化机制模拟实现BeanPostProcessor (Bean的后置处理器) 模拟实现Spring AOP 模拟实现 准备工作 准备一个空的工程创建spring的容器类&#xff0c;它是Spring IOC理念的实现&#xff0c;负…