机器学习之无监督学习

无监督学习(Unsupervised Learning)是机器学习的一个重要分支,其特点是在训练过程中不使用标签数据。与有监督学习不同,无监督学习的目标是从未标记的数据中发现隐藏的结构、模式或关系。无监督学习广泛应用于聚类、降维、异常检测等领域。

1. 无监督学习的核心任务

无监督学习主要解决以下两类问题:

1.1 聚类(Clustering)

将数据划分为若干个组(簇),使得同一组内的数据点相似,而不同组之间的数据点差异较大。常见的聚类算法包括:

  • K-Means:将数据划分为 K 个簇,最小化簇内距离。

  • 层次聚类:通过构建树状结构( dendrogram)将数据分层聚类。

  • DBSCAN:基于密度的聚类算法,能够识别噪声和异常点。

1.2 降维(Dimensionality Reduction)

将高维数据映射到低维空间,同时保留数据的主要特征。常见的降维算法包括:

  • 主成分分析(PCA):通过线性变换将数据投影到方差最大的方向。

  • t-SNE:用于可视化高维数据的非线性降维方法。

  • 自编码器(Autoencoder):通过神经网络实现非线性降维。


2. 无监督学习的应用场景

2.1 数据探索

  • 通过聚类和降维,发现数据中的潜在结构和模式。

  • 例如,在客户细分中,将客户分为不同的群体以制定个性化营销策略。

2.2 数据预处理

  • 降维可以减少数据的维度,提高计算效率并缓解“维度灾难”。

  • 例如,在图像处理中,使用 PCA 压缩图像数据。

2.3 异常检测

  • 通过聚类或密度估计,识别数据中的异常点。

  • 例如,在金融领域,检测信用卡欺诈交易。

2.4 生成模型

  • 通过学习数据的分布,生成新的数据样本。

  • 例如,生成对抗网络(GAN)和变分自编码器(VAE)。


3. 常见的无监督学习算法示例

3.1 K-Means 聚类

K-Means 是一种经典的聚类算法,通过迭代优化簇中心和簇分配来最小化簇内距离。

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt# 创建一些随机数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100 个样本,2 个特征# 使用 K-Means 聚类
kmeans = KMeans(n_clusters=3)  # 设置簇的数量为 3
kmeans.fit(X)# 获取聚类结果
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')  # 绘制数据点
plt.scatter(centers[:, 0], centers[:, 1], c='red', marker='x')  # 绘制簇中心
plt.title("K-Means Clustering")
plt.show()

3.2 主成分分析(PCA)

PCA 是一种线性降维方法,通过投影到方差最大的方向来保留数据的主要特征。

from sklearn.decomposition import PCA
import numpy as np# 创建一些随机数据
X = np.random.rand(100, 10)# 使用 PCA 降维
pca = PCA(n_components=2)
X_reduced = pca.fit_transform(X)

3.3 t-SNE

t-SNE 是一种非线性降维方法,特别适合高维数据的可视化。

from sklearn.manifold import TSNE
import numpy as np# 创建一些随机数据
X = np.random.rand(100, 20)# 使用 t-SNE 降维
tsne = TSNE(n_components=2)
X_reduced = tsne.fit_transform(X)

3.4 自编码器(Autoencoder)

自编码器是一种神经网络模型,通过编码和解码过程实现数据降维。

import torch
import torch.nn as nn# 定义自编码器模型
class Autoencoder(nn.Module):def __init__(self):super(Autoencoder, self).__init__()self.encoder = nn.Sequential(nn.Linear(20, 10),nn.ReLU(),nn.Linear(10, 2)  # 降维到 2 维)self.decoder = nn.Sequential(nn.Linear(2, 10),nn.ReLU(),nn.Linear(10, 20))def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x# 初始化模型和优化器
model = Autoencoder()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()# 训练模型
for epoch in range(100):optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, inputs)loss.backward()optimizer.step()

4. 无监督学习的挑战

4.1 缺乏明确的评价指标

由于无监督学习没有标签数据,评估模型性能通常比较困难。常用的方法包括轮廓系数(Silhouette Score)和肘部法(Elbow Method)。

4.2 对数据质量敏感

无监督学习的效果高度依赖于数据的质量和特征选择。噪声和冗余特征可能导致模型性能下降。

4.3 解释性差

无监督学习的结果通常难以解释,尤其是在高维数据或复杂模型中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29403.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理:朴素贝叶斯

介绍 大家好,博主又来和大家分享自然语言处理领域的知识了。按照博主的分享规划,本次分享的核心主题本应是自然语言处理中的文本分类。然而,在对分享内容进行细致梳理时,我察觉到其中包含几个至关重要的知识点,即朴素…

HTML label 标签使用

点击 <label> 标签通常会使与之关联的表单控件获得焦点或被激活。 通过正确使用 <label> 标签&#xff0c;可以使表单更加友好和易于使用&#xff0c;同时提高整体的可访问性。 基本用法 <label> 标签通过 for 属性与 id 为 username 的 <input> 元素…

Ubuntu20.04双系统安装及软件安装(五):VSCode

Ubuntu20.04双系统安装及软件安装&#xff08;五&#xff09;&#xff1a;VSCode 打开VScode官网&#xff0c;点击中间左侧的deb文件下载&#xff1a; 系统会弹出下载框&#xff0c;确定即可。 在文件夹的**“下载”目录**&#xff0c;可看到下载的安装包&#xff0c;在该目录下…

SparkSQL全之RDD、DF、DS ,UDF、架构、资源划分、sql执行计划、调优......

1 SparkSQL概述 1.1 sparksql简介 Shark是专门针对于spark的构建大规模数据仓库系统的一个框架Shark与Hive兼容、同时也依赖于Spark版本Hivesql底层把sql解析成了mapreduce程序&#xff0c;Shark是把sql语句解析成了Spark任务随着性能优化的上限&#xff0c;以及集成SQL的一些…

Linux总结

1 用户与用户组管理 1.1 用户与用户组 //linux用户和用户组 Linux系统是一个多用户多任务的分时操作系统 使用系统资源的用户需要账号进入系统 账号是用户在系统上的标识&#xff0c;系统根据该标识分配不同的权限和资源 一个账号包含用户和用户组 //用户分类 超级管理员 UID…

【AI深度学习网络】卷积神经网络(CNN)入门指南:从生物启发的原理到现代架构演进

深度神经网络系列文章 【AI深度学习网络】卷积神经网络&#xff08;CNN&#xff09;入门指南&#xff1a;从生物启发的原理到现代架构演进【AI实践】基于TensorFlow/Keras的CNN&#xff08;卷积神经网络&#xff09;简单实现&#xff1a;手写数字识别的工程实践 引言 在当今…

Qt之QGraphicsView图像操作

QGraphicsView图像操作:旋转、放大、缩小、移动、图层切换 1 摘要 GraphicsView框架结构主要包含三个主要的类QGraphicsScene(场景)、QGraphicsView(视图)、QGraphicsItem(图元)。QGraphicsScene本身不可见,是一个存储图元的容器,必须通过与之相连的QGraphicsView视图来显…

【Azure 架构师学习笔记】- Azure Databricks (14) -- 搭建Medallion Architecture part 2

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (13) – 搭建Medallion Architecture part 1 前言 上文搭建了ADB 与外部的交互部分&#xff0c;本篇搭建ADB 内部配置来满足medallion 架构。…

AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 &#xff0c;本文不仅介绍其文生图和文生视频的使用秘籍&#xff0c;还将手把手教你如何利用它实现图生视频。 如下为生成的视频效果&#xff08;我录制的GIF动图&#xff09; 如下为输入的图片 目录 1.阿里巴巴全面开源旗下视频生成模型万相2.1模…

PostgreSQL 安装与使用

下载地址: EDB: Open-Source, Enterprise Postgres Database Management 安装图形化安装界面安装。安装完后将bin目录配置到系统环境变量 执行psql -h localhost -p 5432 -U postgres 密码在安装过程中设置的 ​ 0、修改密码 ALTER USER sonar WITH PASSWORD 123456; 1、新…

Go加spy++隐藏窗口

最近发现有些软件的窗口就像狗皮膏药一样&#xff0c;关也关不掉&#xff0c;一点就要登录&#xff0c;属实是有点不爽了。 窗口的进程不能杀死&#xff0c;但是窗口我不想要。思路很简单&#xff0c;用 spy 找到要隐藏的窗口的句柄&#xff0c;然后调用 Windows 的 ShowWindo…

[内网安全] Windows 域认证 — Kerberos 协议认证

&#x1f31f;想系统化学习内网渗透&#xff1f;看看这个&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;Kerberos 协议简介 Kerberos 是一种网络认证协议&#xff0c;其设计目标是通过密钥系统为客户机 / 服务器应用程序提供强大的认证服务。该认证过…

服务器数据恢复—raid5阵列中硬盘掉线导致上层应用不可用的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 某公司一台服务器&#xff0c;服务器上有一组由8块硬盘组建的raid5磁盘阵列。 磁盘阵列中2块硬盘的指示灯显示异常&#xff0c;其他硬盘指示灯显示正常。上层应用不可用。 服务器数据恢复过程&#xff1a; 1、将服务器中所有硬盘编号…

π0源码解析——一个模型控制7种机械臂:对开源VLA sota之π0源码的全面分析,含我司的部分落地实践

前言 ChatGPT出来后的两年多&#xff0c;也是我疯狂写博的两年多(年初deepseek更引爆了下)&#xff0c;比如从创业起步时的15年到后来22年之间 每年2-6篇的&#xff0c;干到了23年30篇、24年65篇、25年前两月18篇&#xff0c;成了我在大模型和具身的原始技术积累 如今一转眼…

Dify+DeepSeek | Excel数据一键可视化(创建步骤案例)(echarts助手.yml)(文档表格转图表、根据表格绘制图表、Excel绘制图表)

Dify部署参考&#xff1a;Dify Rag部署并集成在线Deepseek教程&#xff08;Windows、部署Rag、安装Ragan安装、安装Dify安装、安装ollama安装&#xff09; DifyDeepSeek - Excel数据一键可视化&#xff08;创建步骤案例&#xff09;-DSL工程文件&#xff08;可直接导入&#x…

由麻省理工学院计算机科学与人工智能实验室等机构创建低成本、高效率的物理驱动数据生成框架,助力接触丰富的机器人操作任务

2025-02-28&#xff0c;由麻省理工学院计算机科学与人工智能实验室&#xff08;CSAIL&#xff09;和机器人与人工智能研究所的研究团队创建了一种低成本的数据生成框架&#xff0c;通过结合物理模拟、人类演示和基于模型的规划&#xff0c;高效生成大规模、高质量的接触丰富型机…

OpenCV计算摄影学(11)色调映射算法类cv::TonemapDrago

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::TonemapDrago 是 OpenCV 中实现的基于 Paul Debevec 和 Jorge Moraleda 以及后来由 Rogier van de Weijer 和 Theo Drago 改进的色调映射算法…

蓝桥杯 Excel地址

Excel地址 题目描述 Excel 单元格的地址表示很有趣&#xff0c;它使用字母来表示列号。 比如&#xff0c; A 表示第 1 列&#xff0c; B 表示第 2 列&#xff0c; Z 表示第 26 列&#xff0c; AA 表示第 27 列&#xff0c; AB 表示第 28 列&#xff0c; BA 表示第 53 列&#x…

JS禁止web页面调试

前言 由于前端在页面渲染的过程中 会调用很多后端的接口&#xff0c;而有些接口是不希望别人看到的&#xff0c;所以前端调用后端接口的行为动作就需要做一个隐藏。 禁用右键菜单 document.oncontextmenu function() {console.log("禁用右键菜单");return false;…

实例详细演示在Pytest中如何忽略警告

关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理&#xff0c;构建成功的基石 在自动化测试工作之前&#xff0c;你应该知道的10条建议 在自动化测试中&#xff0c;重要的不是工具 当你尝试运行Pytest代码时&#xff0c;那些不相关的警告突然弹出&#xff0c;是不是…