深入探索MySQL:成本模型解析与查询性能优化,及未来深度学习与AI模型的应用展望

码到三十五 : 个人主页



在数据库管理系统中,查询优化器是一个至关重要的组件,它负责将用户提交的SQL查询转换为高效的执行计划。在MySQL中,查询优化器使用了一个称为“成本模型”的机制来评估不同执行计划的优劣,并选择其中成本最低的那个。本文将深入探讨MySQL的成本模型,以及如何利用这一知识来优化查询性能。

目录

    • 一、成本模型简介
    • 二、优化器如何工作
    • 三、如何利用成本模型优化查询
    • 四、成本值的存储和配置
      • 常用的成本条目
    • 五、全表扫码成本计算
      • 成本计算步骤
      • 优化器决策
      • 实际考虑因素
    • 六、未来展望
    • 结语

一、成本模型简介

成本模型是查询优化器用来估算查询执行成本的一组规则和算法。对于给定的查询,优化器会考虑多种可能的执行计划,并使用成本模型来预测每种计划的执行效率。执行成本通常是一个抽象的数值,它综合了CPU时间、I/O操作、内存使用等多个因素。

在MySQL中,成本模型主要基于以下几个方面的考量:

  1. 数据表的统计信息:包括表的行数、列的基数(不同值的数量)、索引的唯一性等。这些信息对于评估查询的过滤效果和索引的选择性至关重要。

  2. 索引的使用:索引可以显著提高查询性能,但并非所有情况下都是最优选择。成本模型会评估使用索引带来的I/O减少与索引维护成本之间的权衡。

  3. 连接操作:对于涉及多个表的查询,成本模型会考虑不同连接策略(如嵌套循环连接、哈希连接等)的成本。

  4. 排序和分组操作:这些操作通常需要额外的CPU和内存资源。成本模型会估算不同排序和分组策略的成本,并选择最优方案。

在这里插入图片描述

二、优化器如何工作

MySQL的查询优化器在执行查询之前会经历以下几个步骤:

  1. 解析查询:将SQL文本转换为抽象语法树(AST)。

  2. 预处理:检查查询的语义正确性,进行常量折叠等优化。

  3. 查询重写:根据规则和启发式方法修改原始查询,以简化结构或提高性能。

  4. 生成执行计划:考虑所有可能的执行路径,并使用成本模型评估每种路径的成本。

  5. 选择最优执行计划:根据成本模型的估算结果,选择成本最低的执行计划。

  6. 执行查询:按照选定的执行计划执行查询并返回结果。

三、如何利用成本模型优化查询

了解MySQL的成本模型对于数据库管理员和开发来说是非常有价值的。下面的一些实践建议可以帮助你利用成本模型来优化查询性能:

  1. 保持统计信息更新:定期运行ANALYZE TABLE命令来更新表的统计信息,确保优化器有准确的数据来评估查询成本。

  2. 合理设计索引:根据查询模式和数据分布来设计索引,避免过度索引导致的性能下降。使用EXPLAIN命令来检查查询是否使用了合适的索引。

  3. 优化查询语句:简化复杂的SQL查询,避免不必要的连接、子查询和计算。使用索引覆盖扫描(Covering Index)来减少数据查找的开销。

  4. 调整配置参数:某些MySQL配置参数会影响成本模型的计算方式。例如,optimizer_search_depth参数可以控制优化器搜索执行计划的深度。根据你的硬件环境和查询负载来调整这些参数。

  5. 监控和分析:使用性能监控工具(如Percona Monitoring and Management, PMM)来跟踪查询的性能指标,并找出性能瓶颈。结合EXPLAIN命令的输出和慢查询日志来分析问题查询的执行计划。

在这里插入图片描述

四、成本值的存储和配置

MySQL在server_costengine_cost这两个系统表中存储了默认的成本值。这些表位于MySQL的系统数据库中(通常是mysql数据库)。服务器在启动时会读取这些成本值到内存中,以便在运行时使用。如果需要,管理员可以通过执行特定的命令(如FLUSH OPTIMIZER_COSTS)来重新从磁盘加载成本表。

重要的是这些成本值是特定于服务器的,并且不会复制到副本或备用服务器。这意味着每台服务器的成本模型可能会根据其硬件配置、工作负载和性能调优策略而有所不同。

常用的成本条目

  • row_evaluate_cost(默认值通常为0.2):这个成本值代表处理一行数据时的CPU成本。随着查询需要处理的行数增加,这个成本也会相应增加。计算公式是:CPU成本 = 行数 * row_evaluate_cost。

  • io_block_read_costmemory_block_read_cost(默认值通常为1.0):这两个成本值分别代表从磁盘和内存中读取一个数据块(通常是一个数据页,大小约为16KB)的成本。IO成本的计算公式是:IO成本 = (总数据大小(以字节为单位)/ 1024) * io_block_read_cost 或 memory_block_read_cost。

  • disk_iotask_cost(磁盘I/O任务成本):这个值表示执行一次磁盘I/O操作的成本。由于磁盘I/O操作通常比内存操作要慢得多,因此这个成本值相对较高。优化器在考虑是否使用索引或进行全表扫描时会考虑这个成本。

  • key_compare_cost(键比较成本):当MySQL使用索引来过滤数据时,需要对索引键进行比较。这个成本条目表示进行一次键比较的成本。这个值通常较低,因为键比较操作相对较快。

  • memory_temptable_create_cost(内存临时表创建成本):在某些查询中,MySQL可能需要创建临时表来存储中间结果。这个成本条目表示在内存中创建一个临时表的成本。如果内存不足,MySQL可能会选择使用磁盘来存储临时表,这会增加I/O成本。

  • memory_temptable_batch_row_cost(内存临时表批量行成本):当向内存临时表中插入多行数据时,这个成本条目表示每插入一批数据的成本。这个值通常较低,因为批量插入比单独插入每一行要高效。

  • disk_temptable_create_cost(磁盘临时表创建成本):如果MySQL选择在磁盘上创建临时表,这个成本条目表示创建磁盘临时表的成本。这个值通常比内存临时表创建成本要高,因为磁盘操作更慢。

  • disk_temptable_batch_row_cost(磁盘临时表批量行成本):类似于内存临时表批量行成本,但这个成本条目是针对磁盘临时表的。它表示向磁盘临时表中批量插入数据的成本。

  • sort_merge_passes(排序合并传递成本):在进行排序操作时,如果数据量很大且内存不足,MySQL可能需要使用归并排序算法。这个成本条目表示进行一次归并传递的成本。归并排序涉及多次合并传递,因此这个成本在评估排序操作的总体成本时很重要。

要获取特定MySQL实例中这些成本条目的实际值,可以查询mysql系统数据库中的server_cost和engine_cost表:

SELECT * FROM mysql.server_cost;  
SELECT * FROM mysql.engine_cost;

在这里插入图片描述

要查看特定表的信息,包括其数据大小(Data_length字段),可以执行以下SQL查询:

SHOW TABLE STATUS LIKE 'your_table_name';

在这个查询结果中,Data_length字段表示表的数据部分占用的字节数。这个值可以用来计算读取整个表数据的IO成本。

在这里插入图片描述

五、全表扫码成本计算

MySQL 优化器会考虑那些因素来决定是否执行全表扫描,以及如何计算其成本的呢,下面我们来基于成本原理计算一下:

我们有一个 employees 表,其中包含员工信息,如 ID、姓名、部门和薪水等。该表具有以下特点:

  • 表大小:约 1GB(这取决于每行数据的大小和总行数)
  • 总行数:5,000,000 行
  • 每行数据大小:约 200 字节(包括所有字段)
  • 数据页大小:16KB(InnoDB 默认页大小)
  • 存储引擎:InnoDB
  • 无有效索引:对于我们要执行的特定查询,没有可以利用的索引

成本计算步骤

  1. 确定数据页数量

    • 首先,计算表占用的数据页数量。由于每行数据约 200 字节,每个数据页 16KB,每个数据页可以容纳大约 80 行数据(16,384 字节 / 200 字节 = 81.92,取整为 80)。
    • 因此,整个表占用的数据页数量为 5,000,000 行 / 80 行/页 = 62,500 页。
  2. I/O 成本计算

    • 假设每次从磁盘读取一个数据页的成本是 1.0(这个值可能因硬件性能而异)。
    • I/O 成本 = 数据页数量 × 每次读取成本 = 62,500 页 × 1.0 = 62,500。
  3. CPU 成本计算

    • CPU 成本通常与需要处理的行数成正比。假设每行数据处理的 CPU 成本是 0.2(这个值也是假设的,实际值可能不同)。
    • CPU 成本 = 总行数 × 每行处理成本 = 5,000,000 行 × 0.2 = 1,000,000。
  4. 总成本计算

    • 总成本 = I/O 成本 + CPU 成本 = 62,500 + 1,000,000 = 1,062,500。

这个总成本是一个估算值,用于与优化器考虑的其他查询执行计划(如使用索引)进行比较。请注意,这里的成本是一个相对值,用于比较不同执行计划的优劣,而不是一个绝对值或货币成本。

优化器决策

基于上述成本计算,如果优化器发现使用索引的成本低于全表扫描的成本,它会选择使用索引。否则,如果没有合适的索引或全表扫描被认为更高效(例如,在需要检索表中大部分行的情况下),优化器将选择全表扫描。

实际考虑因素

在实际应用中,全表扫描的成本会受到多种因素的影响:

  • 缓存中的数据:如果表的部分或全部数据已经缓存在内存中(如 InnoDB 的缓冲池),则实际的 I/O 成本可能会降低。
  • 系统负载:高并发环境下的系统负载可能会影响 CPU 和 I/O 的性能。
  • 表的结构和存储格式:表的列数、数据类型和存储格式(如压缩)都会影响数据的存储和检索效率。
  • 硬件和配置:服务器的硬件配置(如 CPU 速度、内存大小、存储性能)和 MySQL 的配置设置(如缓冲区大小、I/O 相关参数)也会对全表扫描的成本产生显著影响。

六、未来展望

未来我们可以将MySQL的成本模型、查询性能优化与AI大模型结合起来,这将是是一个前沿且有趣的概念。

  • AI大模型,如深度学习模型,可以处理大量的数据并学习其中的复杂模式。这些模型在预测、分类、聚类等任务中表现出色。
  • 在数据库领域,AI大模型可以被用来预测查询的性能、自动调整数据库参数、提供索引建议等。

结合这三者我们期望:

  1. 使用AI模型预测查询性能:你可以训练一个模型,基于历史查询数据和它们的执行时间,来预测新查询的性能。这样,在查询执行之前,你就可以知道其大致的执行时间,从而决定是否需要进行优化。
  2. 自动索引建议:基于AI的模型可以分析查询的模式和数据分布,然后自动推荐应该为哪些列创建索引,以提高查询性能。
  3. 数据库参数自动调整:AI模型可以根据数据库的工作负载自动调整MySQL的配置参数,如缓冲区大小、线程数等,以达到最佳性能。
  4. 查询优化建议:通过分析大量的查询和其对应的执行计划,AI模型可以学习哪些查询模式可能导致性能问题,并为DBA提供优化建议。
  5. 实时监控与预警:结合AI模型,可以实时监控数据库的性能,并在出现性能下降或其他问题时及时发出预警。
  6. 与成本模型结合:AI模型可以进一步完善MySQL的成本模型。例如,当AI模型预测到某个查询可能很慢时,成本模型可以更加详细地评估该查询的各种执行计划,以找到最优的方案。

总的来说,将MySQL的成本模型、查询性能优化与AI大模型结合起来,可以为我们提供更加智能、高效的数据库管理和优化方法。

结语

MySQL的成本模型是查询优化器的核心组件之一,它对于生成高效的执行计划至关重要。通过深入了解成本模型的工作原理,并结合实际的查询优化实践,可以显著提高数据库的性能和响应速度。



感谢 关注公众号 码到三十五 ,共享更多技术资料。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/297958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT 之联盟营销

原文:ChatGPT for Affiliate Marketing 译者:飞龙 协议:CC BY-NC-SA 4.0 第二章 制定转化对话 制定转化对话是每个营销人员和企业所有者都应该掌握的关键技能。它涉及创建和传递引人入胜的信息,吸引您的受众并激励他们采取行动。…

OCR常用识别算法综述

参考:https://aistudio.baidu.com/education/lessonvideo/3279888 语种:常用字符36与常用汉字6623,区别。 标注:文本型位置/单字符位置,后者标注成本大 挑战:场景文字识别:字符大小、颜色、字体…

Rust---复合数据类型之结构体

目录 结构体的使用输出结果 结构体简化创建结构体更新语法元组结构体单元结构体(unit struct)结构体中的引用使用#[derive(Debug)]再次介绍 代码综合展示 与元组不同的是,结构体可以为内部的每个字段起一个富有含义的名称,因此无需…

【THM】Burp Suite:Other Modules(其他模块)-初级渗透测试

介绍 除了广泛认可的Repeater和Intruder房间之外,Burp Suite 还包含几个鲜为人知的模块。这些将成为这个房间探索的重点。 重点将放在解码器、比较器、排序器和组织器工具上。它们促进了编码文本的操作,支持数据集的比较,允许分析捕获的令牌内的随机性,并帮助您存储和注释…

吴恩达机器学习笔记:第 6 周-11机器学习系统的设计(Machine Learning System Design)11.1-11.5

目录 第 6 周 11、 机器学习系统的设计(Machine Learning System Design)11.1 首先要做什么11.2 误差分析11.3 类偏斜的误差度量11.4 查准率和查全率之间的权衡11.5 机器学习的数据 第 6 周 11、 机器学习系统的设计(Machine Learning System Design) 11.1 首先要做什么 在接…

复杂度的讲解

1.算法效率 如何衡量一个算法的好坏?从两个维度,时间和空间(算法运行的快慢,消耗的空间大不大)。因为计算机硬件领域的高速发展,如今计算机的存储量已经达到了一个很高的程度,所以现在我们一般…

Linux--进程(2)

目录 前言 1. 进程的状态 1.1 进程排队 1.2 运行,阻塞,挂起 2.Linux下具体的进程状态 2.1僵尸和孤儿 3.进程的优先级 4.Linux的调度与切换 前言 这篇继续来学习进程的其它知识 上篇文章:Linux--进程(1)-CS…

51单片机入门_江协科技_21.2_74HC595 在Proteus中模拟8x8点阵屏环境搭建

1. 为了在proteus中模拟学习江协科技51单片机教程,需要在proteus中搭建74HC595驱动8x8点阵屏的仿真环境; 1.1. 因为连接单片机P0口作为点阵屏负极(行选),所以需要先在P0口上接上上拉电阻RESPACK 8,1k欧姆阻…

闻风丧胆的算法(二)

🌈个人主页:Rookie Maker 🔥 系列专栏:算法 🏆🏆关注博主,随时获取更多关于IT的优质内容!🏆🏆 😀欢迎来到我的代码世界~ 😁 喜欢的小…

Vue3_2024_7天【回顾上篇watch常见的后两种场景】___续

Vue3中监听多条数据的两种使用 1.watch【使用上一章写法,监听两个属性,然后执行相应操作…】 2.watchEffect【相对于使用watch,watchEffect默认页面初始加载,有点类似加配置:立即执行 immediate】 代码: …

MySql 实战大数据查询-(表分区实现)

一 mysql分区: 分区是将单个表按照某种规则划分成多个子集,每个子集称为一个分区。常见的分区策略包括按照时间范围、范围值、列表等进行分区。 优点: 查询性能更好,涉及分区键的查询,数据库引擎可以只扫描特定分区&…

Cesium 批量种树

1、准备树种建模 分各种级别建模LOD1-LODN 其中meta.json长这样: Gltf再3Dmax中导出Obj,再通过ObjToGltf的工具转换,参考 https://editor.csdn.net/md/?articleId96484597 2、准备shp点数据。(shp中的点位就是种树的位置) 3、准…

神经网络汇聚层

文章目录 最大汇聚层平均汇聚层自适应平均池化层 最大汇聚层 汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚…

清明作业 c++

1.封装一个类&#xff0c;实现对一个数求累和阶乘质数 #include <iostream>using namespace std; int mproduct(int a){if(a>1){return a*mproduct((a-1));}else{return 1;} } class number{int a; public:number():a(5){};number(int a):a(a){}void set(int a){thi…

启动mysql

删除C:\Program Files (x86)\MySQL\MySQL Server 5.7这个路径下的data文件夹&#xff0c;这个很难删除&#xff0c;因为一开机&#xff0c;mysql的某些服务就启动了&#xff0c;每次重新启动mysql之前&#xff0c;都要删除这个文件夹 因为这个文件夹在后端执行一些我们看不到的…

力扣---删除排序链表中的重复元素 II

给定一个已排序的链表的头 head &#xff0c; 删除原始链表中所有重复数字的节点&#xff0c;只留下不同的数字 。返回 已排序的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,3,4,4,5] 输出&#xff1a;[1,2,5]示例 2&#xff1a; 输入&#xff1a;head [1,1,1,…

计算机中丢失steam_api64.dll怎么办?七个方法教你轻松解决

在计算机使用过程中&#xff0c;我们经常会接触到各种各样的动态链接库&#xff08;DLL&#xff09;文件。其中&#xff0c;steamapi64.dll是Steam游戏平台中的一个关键组件&#xff0c;它为Windows操作系统带来了许多好处。本文将详细介绍steamapi64.dll对Windows的好处以及其…

基于小程序实现的校园二手物品交易系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;ssm 【…

9proxy—数据采集工具全面测评

9Proxy数据采集工具Unlock the web with 9Proxy, the top residential proxy provider. Get unlimited bandwidth, affordable prices, and secure HTTPS and Socks5 configurations.https://9proxy.com/?utm_sourceblog&utm_mediumcsdn&utm_campaignyan 前言 在当今数…

笔记本电脑win7 Wireless-AC 7265连不上wifi6

1.背景介绍 旧路由器连接人数有限&#xff0c;老旧&#xff0c;信号不稳定更换了新路由器&#xff0c;如 TL-XDR5430易展版用户电脑连不上新的WIFI网络了&#xff0c;比较着急 核心问题&#xff1a;有效解决笔记本连接wifi上网问题&#xff0c;方法不限 2.环境信息 Windows…