小林coding图解计算机网络|TCP篇06|如何理解TCP面向字节流协议、为什么UDP是面向报文的协议、如何解决TCP的粘包问题?

小林coding网站通道:入口
本篇文章摘抄应付面试的重点内容,详细内容还请移步:小林coding网站通道

文章目录

  • 如何理解UDP 是面向报文的协议
  • 如何理解字节流
  • 如何解决粘包
      • 固定长度的消息
    • 特殊字符作为边界
    • 自定义消息结构

如何理解UDP 是面向报文的协议

之所以会说 TCP 是面向字节流的协议,UDP 是面向报文的协议,是因为操作系统对 TCP 和 UDP 协议的发送方的机制不同,也就是问题原因在发送方

当用户消息通过 UDP 协议传输时,操作系统不会对消息进行拆分,在组装好 UDP 头部后就交给网络层来处理,所以发出去的 UDP 报文中的数据部分就是完整的用户消息,也就是每个 UDP 报文就是一个用户消息的边界,这样接收方在接收到 UDP 报文后,读一个 UDP 报文就能读取到完整的用户消息。

你可能会问,如果收到了两个 UDP 报文,操作系统是怎么区分开的?

操作系统在收到 UDP 报文后,会将其插入到队列里,队列里的每一个元素就是一个 UDP 报文,这样当用户调用 recvfrom() 系统调用读数据的时候,就会从队列里取出一个数据,然后从内核里拷贝给用户缓冲区

在这里插入图片描述

如何理解字节流

当用户消息通过 TCP 协议传输时,消息可能会被操作系统分组成多个的 TCP 报文,也就是一个完整的用户消息被拆分成多个 TCP 报文进行传输。

这样就会导致一个问题,接收方的程序如果不知道发送方发送的消息的长度,也就是不知道消息的边界时,是无法读出一个有效的用户消息的。

下面举个例子说明。

当发送方准备发送「Hi.」和「I am Xiaolin」这两个消息。

在发送端,当我们调用 send 函数完成数据“发送”以后,数据并没有被真正从网络上发送出去,只是从应用程序拷贝到了操作系统内核协议栈中。

至于什么时候真正被发送,取决于发送窗口、拥塞窗口以及当前发送缓冲区的大小等条件。也就是说,我们不能认为每次 send 调用发送的数据,都会作为一个整体完整地消息被发送出去。如果我们考虑实际网络传输过程中的各种影响,假设发送端陆续调用 send 函数先后发送 「Hi.」和「I am Xiaolin」 报文,那么实际的发送很有可能是这几种情况。

  • 两个消息被分到同一个TCP报文「Hi.I am Xiaolin」
  • 「I am Xiaolin」的部分随 「Hi」 在一个 TCP 报文中发送出去。「Hi.I am」「Xiaolin」
  • 第三种情况,「Hi.」 的一部分随 TCP 报文被发送出去,另一部分和 「I am Xiaolin」 一起随另一个 TCP 报文发送出去,像这样。「H」「i.Iam Xiaolin」

因此,我们不能认为一个用户消息对应一个 TCP 报文,正因为这样,所以 TCP 是面向字节流的协议

两个消息的某个部分内容被分到同一个 TCP 报文时,就是我们常说的 TCP 粘包问题,这时接收方不知道消息的边界的话,是无法读出有效的消息要解决这个问题,要交给应用程序

如何解决粘包

粘包的问题出现是因为不知道一个用户消息的边界在哪,如果知道了边界在哪,接收方就可以通过边界来划分出有效的用户消息。

固定长度的消息

这种是最简单方法,即每个用户消息都是固定长度的,比如规定一个消息的长度是 64 个字节,当接收方接满 64 个字节,就认为这个内容是一个完整且有效的消息。

但是这种方式灵活性不高,实际中很少用

特殊字符作为边界

可以在两个用户消息之间插入一个特殊的字符串,这样接收方在接收数据时,读到了这个特殊字符,就把认为已经读完一个完整的消息。HTTP 是一个非常好的例子

有一点要注意,这个作为边界点的特殊字符,如果刚好消息内容里有这个特殊字符,我们要对这个字符转义,避免被接收方当作消息的边界点而解析到无效的数据

自定义消息结构

我们可以自定义一个消息结构,由包头和数据组成,其中包头包是固定大小的,而且包头里有一个字段来说明紧随其后的数据有多大。

比如这个消息结构体,首先 4 个字节大小的变量来表示数据长度,真正的数据则在后面。

struct { u_int32_t message_length; char message_data[]; 
} message;

当接收方接收到包头的大小(比如 4 个字节)后,就解析包头的内容,于是就可以知道数据的长度,然后接下来就继续读取数据,直到读满数据的长度,就可以组装成一个完整到用户消息来处理了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298813.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第20次修改了可删除可持久保存的前端html备忘录:重新布局

第20次修改了可删除可持久保存的前端html备忘录&#xff1a;重新布局 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"…

Elasticsearch:我们如何演化处理二进制文档格式

作者&#xff1a;来自 Elastic Sean Story 从二进制文件中提取内容是一个常见的用例。一些 PDF 文件可能非常庞大 — 考虑到几 GB 甚至更多。Elastic 在处理此类文档方面已经取得了长足的进步&#xff0c;今天&#xff0c;我们很高兴地介绍我们的新工具 —— 数据提取服务&…

[从零开始学习Redis | 第九篇] 深入了解Redis数据类型

前言&#xff1a; 在现代软件开发中&#xff0c;数据存储和处理是至关重要的一环。为了高效地管理数据&#xff0c;并实现快速的读写操作&#xff0c;各种数据库技术应运而生。其中&#xff0c;Redis作为一种高性能的内存数据库&#xff0c;广泛应用于缓存、会话存储、消息队列…

重读Java设计模式: 桥接模式详解

引言 在软件开发中&#xff0c;经常会遇到需要在抽象与实现之间建立连接的情况。当系统需要支持多个维度的变化时&#xff0c;使用传统的继承方式往往会导致类爆炸和耦合度增加的问题。为了解决这一问题&#xff0c;我们可以使用桥接模式。桥接模式是一种结构型设计模式&#…

ARM架构学习笔记2-汇编

RISC是精简指令集计算机&#xff08;RISC:Reduced Instruction Set Computing&#xff09; ARM汇编概述 一开始&#xff0c;ARM公司发布两类指令集&#xff1a; ① ARM指令集&#xff0c;这是32位的&#xff0c;每条指令占据32位&#xff0c;高效&#xff0c;但是太占空间 2…

物联网实战--入门篇之(十)安卓QT--后端开发

目录 一、项目配置 二、MQTT连接 三、数据解析 四、数据更新 五、数据发送 六、指令下发 一、项目配置 按常规新建一个Quick空项目后&#xff0c;我们需要对项目内容稍微改造、规划下。 首先根据我们的需要在.pro文件内添加必要的模块&#xff0c;其中quick就是qml了&…

燃气管网安全运行监测系统功能介绍

燃气管网&#xff0c;作为城市基础设施的重要组成部分&#xff0c;其安全运行直接关系到居民的生命财产安全和城市的稳定发展。然而&#xff0c;随着城市规模的不断扩大和燃气使用量的增加&#xff0c;燃气管网的安全运行面临着越来越大的挑战。为了应对这些挑战&#xff0c;燃…

虚幻UE5智慧城市全流程开发教学

一、背景 这几年&#xff0c;智慧城市/智慧交通/智慧水利等飞速发展&#xff0c;骑士特意为大家做了一个这块的学习路线。 二、这是学习大纲 1.给虚幻UE5初学者准备的智慧城市/数字孪生蓝图开发教程 https://www.bilibili.com/video/BV1894y1u78G 2.UE5数字孪生蓝图开发教学…

蓝桥集训之斐波那契数列

蓝桥集训之斐波那契数列 核心思想&#xff1a;矩阵乘法 将原本O(n)的递推算法优化为O(log2n) 构造1x2矩阵f和2x2矩阵a 发现f(n1) f(n) * a 则f(n1) f(1) * an可以用快速幂优化 #include <iostream>#include <cstring>#include <algorithm>using na…

算法刷题应用知识补充--基础算法、数据结构篇

这里写目录标题 位运算&#xff08;均是拷贝运算&#xff0c;不会影响原数据&#xff0c;这点要注意&#xff09;&、|、^位运算特性细节知识补充对于n-1的理解异或来实现数字交换找到只出现一次的数据&#xff0c;其余数据出现偶数次 >> 、<<二进制中相邻的位的…

第12届蓝桥杯省赛 ---- C/C++ C组

文章目录 1. ASC2. 空间3. 卡片4. 相乘5. 路径6.时间显示7.最少砝码8. 杨辉三角形9. 左孩子右兄弟 第12届蓝桥杯省赛&#xff0c;C/C C组真题&#xff0c;第10题不是很清楚&#xff0c;题解不敢乱放&#x1f601;&#x1f601;&#x1f601; 1. ASC 额。。。。 #include <i…

【WEEK6】 【DAY1】DQL查询数据-第一部分【中文版】

2024.4.1 Monday 目录 4.DQL查询数据&#xff08;重点&#xff01;&#xff09;4.1.Data Query Language查询数据语言4.2.SELECT4.2.1.语法4.2.2.实践4.2.2.1.查询字段 SELECT 字段/* FROM 表查询全部的某某查询指定字段 4.2.2.2.给查询结果或者查询的这个表起别名&#xff08…

Spark-Scala语言实战(13)

在之前的文章中&#xff0c;我们学习了如何在spark中使用键值对中的keys和values,reduceByKey,groupByKey三种方法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢…

【瑞萨RA6M3】1. 基于 vscode 搭建开发环境

基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件&#xff1a; MDK_Device_Packs.zipse…

浅谈物联网高速公路智慧配电室系统构建方案

关键词&#xff1a;高速公路&#xff1b;智慧供配电&#xff1b;电力监控&#xff1b;配电室智能运维托管&#xff1b;安全隐患 0、引言 随着高速公路事业的不断发展和路网的不断延伸&#xff0c;传统的管理方式已难以满足日益增长的需求&#xff0c;动态管理和安全隐患预警成…

ubuntu16如何使用高版本cmake

1.引言 最近在尝试ubuntu16.04下编译开源项目vsome&#xff0c;发现使用apt命令默认安装cmake的的版本太低。如下 最终得知&#xff0c;ubuntu16默认安装确实只能到3.5.1。解决办法只能是源码安装更高版本。 2.源码下载3.20 //定位到opt目录 cd /opt 下载 wget https://cmak…

ADB 命令之 模拟按键/输入

ADB 命令之 模拟按键/输入 模拟按键/输入 在 ​​adb shell​​​ 里有个很实用的命令叫 ​​input​​&#xff0c;通过它可以做一些有趣的事情。 ​​input​​ 命令的完整 help 信息如下&#xff1a; Usage: input [<source>] <command> [<arg>...] Th…

leetcode.面试题 02.07. 链表相交

题目 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 思路 假a在链表A上移动,b在链表B上移动&#xff0c;a移动完在B上开始&…

javaweb学习(day11-监听器Listener过滤器Filter)

一、监听器Listener 1 Listener介绍 Listener 监听器它是 JavaWeb 的三大组件之一。JavaWeb 的三大组件分别是&#xff1a;Servlet 程 序、Listener 监听器、Filter 过滤器 Listener 是 JavaEE 的规范&#xff0c;就是接口 监听器的作用是&#xff0c;监听某种变化(一般就是对…

XRDP登录ubuntu桌面闪退问题

修改 /etc/xrdp/startwm.sh unset DBUS_SESSION_BUS_ADDRESS unset XDG_RUNTIME_DIR . $HOME/.profile