初识二叉树和二叉树的基本操作

目录

一、树 

 1.什么是树

2. 与树相关的概念

二、二叉树 

1.什么是二叉树

2.二叉树特点

3.满二叉树与完全二叉树

4.二叉树性质

 相关题目:

5.二叉树的存储 

6.二叉树的遍历和基本操作 

 二叉树的遍历

二叉树的基本操作


一、树 

 1.什么是树

  • 子树是不相交的;
  • 除了根结点外,每个结点有且仅有一个父结点
  • 一棵N个结点的树有N-1条边。 

树:                                                    非树: 

       

2. 与树相关的概念

  • 结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
  • 树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
  • 叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
  • 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
  • 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
  • 根结点:一棵树中,没有双亲结点的结点;如上图:A
  • 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
  • 树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

二、二叉树 

1.什么是二叉树

一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

 

2.二叉树特点

  • 二叉树不存在度大于2的结点(树的度:一棵树中,所有结点 度的最大值 称为树的度)
  • 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树 

3.满二叉树与完全二叉树

  • 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵又树的层数为K,且结点总数是2^k-1,则它就是满二叉树

  • 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一 一对应时称之为完全二叉树。 意思就是完全二叉树的所有节点从上到下,从左到右依次排满。 要注意的是满二叉树是一种特殊的完全二又树。 

完全二叉树有一个特点,那就是如果总结点数为奇数,那么这个二叉树就只有一个度为1的节点,如果是偶数,就没有度为1的结点。 

4.二叉树性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2^{i}-1(i>0)个结点

2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是2^{k}-1(k>=0)

3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1

4. 具有n个结点的完全二叉树的深度k为\log _{_{2}}(n+1)上取整

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i 的结点有:

  • 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
  • 若2i+1<n,左孩子序号:2i+1,否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,否则无右孩子 

 相关题目:

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2
3.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386
4.一棵完全二叉树的节点数为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12 

答案:
1.B

解析:

叶子结点或终端结点:度为0的结点称为叶结点。
由前面说的二叉树性质第3点:对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1。

所以 n2=199,n0=n2+1=200.

2.A

解析: 

设结点总数为N=2n,因为题目中说了这是一颗完全二叉树,而结点总数是偶数,那么说明这个二叉树只有一个度为1的结点。
N=n0+n1+n2 => 2n=n0+n2+1 因为n0=n2+1,所以  2n-1=n0+n0-1 => n0=n

3.B 

解析: 

N=767,767为奇数,所以这个二叉树没有度为1的结点(n1=0)
N=n0+n1+n2=n0+n0-1=767 => n0=384

4.B 

解析: 

由前面说的二叉树性质第4点:具有n个结点的完全二叉树的深度k为l\log _{_{2}}(n+1)上取整.

2^{9}< 532 <2^{10}  => 9<\log _{_{2}}532 <10,因为是上取整,那么 k=10.

5.二叉树的存储 

二叉树的存储结构分为:
顺序存储类似于链表的链式存储。二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式(孩子表示法以及孩子双亲表示法)。 

// 孩子表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
} 
// 孩子双亲表示法
class Node {int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点
}

6.二叉树的遍历和基本操作 

二叉树的遍历

1.前中后序遍历

  • 前序遍历:根节点 左子树 右子树
  • 中序遍历:左子树 根节点 右子树
  • 后序遍历:左子树 右子树 根节点

2.层序遍历

自上而下,自左至右逐层访问树的结点的过程就是层序遍历

有如下二叉树,大家可用上述方法自行遍历 

前序遍历:A B D E H C F G

中序遍历:D B E H A F C G 

后序遍历:B D E H C F G A 

层序遍历:A B C D E F G H 

代码实现: 

这里先按照上图用穷举的方式快速构建一颗二叉树(不是构建二叉树的正确方法) 

public class BinaryTree {public static class TreeNode {TreeNode left;TreeNode right;char val;TreeNode(char val) {this.val = val;}}private TreeNode root;public TreeNode createTree() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');root = A;A.left = B;A.right = C;B.left = D;B.right = E;C.left = F;C.right = G;E.right = H;return A;}//前序遍历public void preOrder(TreeNode root){if(root==null){return;}System.out.print(root.val+" ");preOrder(root.left);preOrder(root.right);}//中序遍历public void inOrder(TreeNode root){if (root==null){return;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}//后序遍历public void postOrder(TreeNode root){if (root==null){return;}preOrder(root.left);preOrder(root.right);System.out.print(root.val+" ");}}
public class Main {public static void main(String[] args) {BinaryTree binaryTree=new BinaryTree();BinaryTree.TreeNode root=binaryTree.createTree();System.out.print("前序遍历:");binaryTree.preOrder(root);System.out.println();System.out.print("中序遍历:");binaryTree.inOrder(root);System.out.println();System.out.print("后序遍历:");binaryTree.postOrder(root);}
}

运行结果:

二叉树的基本操作

1. 获取树中节点的个数

这个方法实现在这里有两种思路:

1.遍历这个树,是结就nodeSize++
2.用子问题的思路来解决:总结点数=左子树结点的个数+右子树结点的个数+根结点

    public static int nodeSize=0;//获取树中节点的个数(遍历每个节点)public void size(TreeNode root){if (root==null){return;}nodeSize++;size(root.left);size(root.right);}//用子问题的思路来解决:总节点数=左子树节点的个数+右子树节点的个数+根节点public int size2(TreeNode root){if (root==null){return 0;}int tmp=size2(root.left)+size2(root.right)+1;return tmp;}

2.获取叶子节点的个数

叶子结点的特点就是度为0,即其左子树和右子树都是空。

这个方法实现在这里有两种思路:

1.遍历这个树,只要root不为空且root的左子树和右子树都为空,就说明root所在的结点是叶子结点
2.用子问题的思路来解决:总叶子结点数=左子树的叶子结点+右子树的叶子结点

    public int leafSize;public void getLeafNodeCount(TreeNode root) {if(root == null) {return;}if(root.left == null && root.right == null) {leafSize++;}getLeafNodeCount(root.left);getLeafNodeCount(root.right);}//子问题思路:这颗树的总叶子结点数=左子树的叶子结点+右子树的叶子结点public int getLeafNodeCount2(TreeNode root) {if (root == null) {return 0;}if (root.left == null && root.right == null) {return 1;}return getLeafNodeCount2(root.left)+ getLeafNodeCount2(root.right);}

3.获取第K层节点的个数

    public int getKLevelNodeCount(TreeNode root,int k){if (root==null){return 0;}if (k==1){return 1;}return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1);}

4.获取二叉树的高度

 整棵树的高度=找出 左子树的高度 和 右子树的高度 的最大值 +1(树的高度或深度:树中结点的最大层次)

    // 获取二叉树的高度public int getHeight(TreeNode root){if(root==null){return 0;}int leftHeight=getHeight(root.left);int rightHeight=getHeight(root.right);return Math.max(leftHeight,rightHeight)+1;}

5. 检测值为value的元素是否存在

1.先判断根节点的值是不是我们要找的value,如果是就返回这个root

2.如果当前根节点不是我们要找的value,那就到当前根节点的左子树去找,如果左子树找不到就去右子树找。

// 检测值为value的元素是否存在private TreeNode find(TreeNode root, int val){if (root==null){return null;}if (root.val==val){System.out.println(root.val);return root;}TreeNode leftval=find(root.left,val);if(leftval!=null){return leftval;}TreeNode rightval=find(root.right,val);if (rightval!=null){return rightval;}return null;}

6.层序遍历

先入队根节点,然后出队,若当前根节点左右不为空,则把不为空的左右入队,出新的队头,以此类推。  

   public void levelOrder(TreeNode root) {if(root == null) {return;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode cur = queue.poll();System.out.print(cur.val+" ");if(cur.left != null) {queue.offer(cur.left);}if(cur.right != null) {queue.offer(cur.right);}}}

7.判断一棵树是不是完全二叉树

1.先把根节点放到队列当中

2.队列不为空,弹出元素,带入左右(可以为空)

3.当队列弹出元素为null则停止

4.最后一步,判断当前队列是否元素都是nul,只要出现不为nul的元素,则当前二又树不是完全二叉树 

   public boolean isCompleteTree(TreeNode root) {if(root == null) return true;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);while (!queue.isEmpty()) {TreeNode cur = queue.poll();if(cur != null) {queue.offer(cur.left);queue.offer(cur.right);}else {break;//结束之后  遍历队列剩下的所有元素 是不是都是null}}// 遍历队列剩下的所有元素 是不是都是nullwhile (!queue.isEmpty()) {TreeNode cur = queue.poll();if(cur != null) {return false;}}return true;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/298920.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

了解这些技术:Flutter应用顺利登陆iOS平台的步骤与方法

引言 &#x1f680; Flutter作为一种跨平台的移动应用程序开发框架&#xff0c;为开发者提供了便利&#xff0c;使他们能够通过单一的代码库构建出高性能、高保真度的应用程序&#xff0c;同时支持Android和iOS两个平台。然而&#xff0c;完成Flutter应用程序的开发只是第一步…

HTML转pdf批量高效转换:释放文本潜力,让信息流动更自由!

在数字化信息的海洋中&#xff0c;HTML以其灵活性和互动性成为网页内容的标准格式。然而&#xff0c;有时我们需要将网页内容保存为PDF格式&#xff0c;以确保信息的稳定性和易读性。为了满足这一需求&#xff0c;我们推出了一款强大的HTML转PDF批量高效转换工具&#xff0c;让…

网络安全 | 什么是单点登录SSO?

关注WX&#xff1a;CodingTechWork SSO-概念 单点登录 (SSO) 是一种身份认证方法&#xff0c;用户一次可通过一组登录凭证登入会话&#xff0c;在该次会话期间无需再次登录&#xff0c;即可安全访问多个相关的应用和服务。SSO 通常用于管理一些环境中的身份验证&#xff0c;包…

如何在 Mac 上恢复已删除的数据

如果您丢失了 Mac 上的数据&#xff0c;请不要绝望。恢复数据比您想象的要容易&#xff0c;并且有很多方法可以尝试。 在 Mac 上遭受数据丢失是每个人都认为永远不会发生在他们身上的事情之一......直到它发生。不过&#xff0c;请不要担心&#xff0c;因为您可以通过多种方法…

笔记-Building Apps with the ABAP RESTful Application Programming Model-Week3

Week3 Unit 1: The Enhanced Business Scenario 本节介绍了将要练习的demo的业务场景,在前两周成果的基础上,也就是只读列表,也可以说是报表APP基础上启用了事务能力,也就是CURD以及自定义业务功能的能力,从创建基本的behavior definition,然后behavior definition proj…

OSPF协议详解

静态缺点 1、中大型复杂网络----配置量大 2、不能实时收敛 动态-----可以实时收敛 IGP----内部网关路由协议 RIP OSPF EIGRP ISIS EGP----外部网关路由协议 BGP IGP &#xff08;选路佳 占用资源 收敛快&#xff09;----一个协议好需满足这三个 距离矢量 DV RIP…

wordpress全站开发指南-面向开发者及深度用户(全中文实操)--初尝php

初尝php 打开你下载的wordpress文件夹&#xff0c;如果你用的xampp那它就在xampp安装的文件夹–htdocs文件夹–你可以新建一个test文件夹–新建一个test.php文件 <html><head><title>First attempt at PHP</title></head><body><?ph…

NoSQL概述

NoSQL概述 目录 一、为什么用NoSQL 二、什么是NoSQL 三、经典应用分析 四、N o S Q L 数 据 模 型 简 介 五、NoSQL四大分类 六、CAP BASE 一、为什么用NoSQL 1、单机MySQL的美好年代 在90年代&#xff0c;一个网站的访问量一般不大&#xff0c;用单个数据库完全可以轻松应…

VScode debug python(服务器)

方法一&#xff1a; 创建launch.json文件&#xff1a; launch.json文件地址&#xff1a; launch.json文件内容&#xff1a; {"version": "0.2.0", //指定了配置文件的版本"configurations": [{"name": "Python: Current File&…

C++:日期类的实现 const修饰 取地址及const取地址操作符重载(类的6个默认成员函数完结篇)

一、日期类的实现 根据之前赋值运算符重载逻辑&#xff0c;我们现在来实现完整的日期类。 1.1 判断小于 上篇博客已经实现: bool operator<(const Date& d) {if (_year < d._year){return true;}else if (_year d._year){if (_month < d._month){return true…

Arcade 作用力

这个程序展示了简单的变换反馈的应用。变换反馈类似于渲染&#xff0c;但是输出的是一个缓冲区而不是帧缓冲区/屏幕。 这个例子展示了一个常见的ping-pong技术&#xff0c;即在两个缓冲区之间对具有位置和速度的点进行变换&#xff0c;这样我们就始终在前一状态上工作。 初始…

深入浅出 -- 系统架构之单体到分布式架构的演变

一、传统模式的技术改革 在很多年以前&#xff0c;其实没有严格意义上的前后端工程师之分&#xff0c;每个后端就是前端&#xff0c;同理&#xff0c;前端也可以是后端&#xff0c;即Ajax、jQuery技术未盛行前的年代。 起初&#xff0c;大部分前端界面很简单&#xff0c;显示的…

xss.pwnfunction-Ugandan Knuckles

这个是把<>过滤掉了所以只能用js的事件 ?weya"onfocus"alert(1337)" autofocus"

Linux之shell脚本编辑工具awk

华子目录 概念工作流程工作图流程&#xff08;按行处理&#xff09; awk程序执行方式1.通过命令行执行awk程序实例 2.awk命令调用脚本执行实例 3.直接使用awk脚本文件调用实例 awk命令的基本语法格式BEGIN模式与END模式实例awk的输出 记录和域&#xff08;记录表示数据行&#…

真--个人收款系统方案

此文主要说明方案&#xff0c;无代码部分 前言: 有个个人项目需要接入vip系统&#xff0c;我们发现微信、支付宝的官方API主要服务商户&#xff0c;而市面上的“个人收款系统”也往往不符合我们的需求。不过&#xff0c;每次支付时通知栏的信息给了我灵感。走投无路&#xff0…

Polardb MySQL 产品架构及特性

一、产品概述; 1、产品族 参考&#xff1a;https://edu.aliyun.com/course/3121700/lesson/341900000?spma2cwt.28120015.3121700.6.166d71c1wwp2px 2、polardb mysql架构优势 1&#xff09;大容量高弹性&#xff1a;最大支持存储100T&#xff0c;最高超1000核CPU&#xff0…

【ArcGIS微课1000例】0107:ArcGIS加载在线历史影像服务WMTS

文章目录 一、WMTS历史影像介绍二、ArcGIS加载WMTS服务三、Globalmapper加载WMTS服务一、WMTS历史影像介绍 通过访问历史影响WMTS服务,可以将全球范围内历史影像加载进来,如下所示: WMTS服务: https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/WM…

CLoVe:在对比视觉语言模型中编码组合语言

CLoVe:在对比视觉语言模型中编码组合语言 摘要引言相关工作CLoVe: A Framework to Increase Compositionality in Contrastive VLMsSynthetic CaptionsHard NegativesModel Patching CLoVe: Encoding Compositional Language inContrastive Vision-Language Models 摘要 近年来…

使用Vivado Design Suite进行BUFG 优化

在 Xilinx FPGA 设计中&#xff0c;BUFG 是一个不带使能功能的全局时钟缓冲器&#xff08;Global Clock Buffer&#xff09;&#xff0c;它是与专用全局时钟输入管脚相连接的首级全局缓冲。所有从全局时钟管脚输入的信号必须经过IBUFG 单元&#xff0c;否则在布局布线时会报错。…

Mac - Keychron K3 Pro 功能键改键 -via 改键配置 For Mac

前言 Keychron K3 Pro键盘连接Mac使用&#xff0c;顶部一排功能键&#xff0c;默认是Mac的多媒体功能键。F1&#xff5e;F12功能键&#xff0c;需要按&#xff1a;Fn F1&#xff5e;F12。 而在我的日常工作中&#xff0c;常用的是F1&#xff5e;F12&#xff0c;期望F1~F12功…