用Python分割并高效处理PDF大文件

在处理大型PDF文件时,将它们分解成更小、更易于管理的块通常是有益的。这个过程称为分区,它可以提高处理效率,并使分析或操作文档变得更容易。在本文中,我们将讨论如何使用Python和为Unstructured.io库将PDF文件划分为更小的部分。

我们将使用两个Python库来完成此任务:

  • PyPDF2:一个可以读、写、合并和分割PDF文件的库。
  • Unstructured.io:一个可以使用文档图像分析模型分割PDF文档的库。

在这里插入图片描述

下面是完成这个任务的Python代码:

from PyPDF2 import PdfReader, PdfWriter
from unstructured.partition.pdf import partition_pdfimport os
from os import path# Create the output directory if it doesn't exist
# os.makedirs('./output', exist_ok=True)
path = path.abspath(path.dirname(__file__))# pdf_file = path + '/sample01.pdf'filename =  path + "/sample02.pdf"# Read the original PDF
input_pdf = PdfReader(f'{filename}')batch_size = 2
num_batches = len(input_pdf.pages) // batch_size + 1filename = path + "/output" 
# Extract batches of 100 pages from the PDF
for b in range(num_batches):writer = PdfWriter()# Get the start and end page numbers for this batchstart_page = b * batch_sizeend_page = min((b+1) * batch_size, len(input_pdf.pages))# Add pages in this batch to the writerfor i in range(start_page, end_page):writer.add_page(input_pdf.pages[i])# Save the batch to a separate PDF filebatch_filename = f'{filename}-batch{b+1}.pdf'with open(batch_filename, 'wb') as output_file:writer.write(output_file)# Now you can use the `partition_pdf` function from Unstructured.io to analyze the batchelements = partition_pdf(filename=batch_filename)print(elements)# Do something with `elements`...# This will process without issue# 抽取表格数据elements = partition_pdf("copy-protected.pdf", strategy="hi_res")

第一步:读PDF文件

首先,我们从PyPDF2库导入必要的类:PdfReader和PdfWriter。PdfReader类用于读取原始PDF文件,该文件存储在名为“exam-prep”的子目录中。

步骤2:分区PDF

我们决定批大小,即PDF的每个块将包含的页数。在本例中,我们选择了100页的批处理大小,但这可以根据您的需要进行调整。

然后通过将PDF中的总页数除以批大小来计算批数量。添加1以确保在页面总数不是批大小的倍数时捕获所有剩余页面。

步骤3:写PDF块

接下来,循环遍历每个批处理,为每个批处理创建一个新的PdfWriter对象。对于每个批处理,我们计算起始页码和结束页码,并使用add_page方法将该范围内的每个页码添加到PdfWriter。

一旦添加了批处理的所有页面,我们将它们写入‘output’子目录下的新PDF文件中。每个块的文件名包括原始文件名和批号。

步骤4:分析PDF块

将PDF分成更小的块后,现在可以使用来自非结构化的partition_pdf函数。IO库来分析每个批处理。该函数使用文档图像分析模型对PDF文档进行分段,并返回已解析PDF文档页面中出现的元素列表。

最后总结

将大型PDF文件划分为更小的块可以使它们更容易、容错和消耗更少的内存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/29945.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python——计算机网络

一.ip 1.ip的定义 IP是“Internet Protocol”的缩写,即“互联网协议”。它是用于计算机网络通信的基础协议之一,属于TCP/IP协议族中的网络层协议。IP协议的主要功能是负责将数据包从源主机传输到目标主机,并确保数据能够在复杂的网络环境中正…

【MySQL】事务|概念|如何回滚|基本特性|MySQL事务隔离性具体怎么实现的

目录 1.为啥引入 2.是啥 3.如何回滚(日志) 🔥4.面试题:谈谈事务的基本特性 (1)原子性 (2)一致性(收入和支出相匹配) (3)持久性…

deepseek 本地部署

deepseek 本地部署 纯新手教学,手把手5分钟带你在本地部署一个私有的deepseek,再也不用受网络影响。流畅使用deepseek!!! 如果不想看文章,指路:Deep seek R1本地部署 小白超详细教程 &#xff0…

⭐算法OJ⭐N-皇后问题 II【回溯剪枝】(C++实现)N-Queens II

⭐算法OJ⭐N-皇后问题【回溯剪枝】(C实现)N-Queens 问题描述 The n-queens puzzle is the problem of placing n n n queens on an n n n \times n nn chessboard such that no two queens attack each other. Given an integer n, return the num…

关联封号率降70%!2025最新IP隔离方案实操手册

高效运营安全防护,跨境卖家必看的风险规避指南 跨境账号管理的核心挑战:关联封号风险激增 2024年,随着全球电商平台对账号合规的审查日益严苛,“关联封号”已成为跨境卖家最头疼的问题之一。无论是同一IP登录多账号、员工操作失误…

pytest框架 核心知识的系统复习

1. pytest 介绍 是什么:Python 最流行的单元测试框架之一,支持复杂的功能测试和插件扩展。 优点: 语法简洁(用 assert 替代 self.assertEqual)。 自动发现测试用例。 丰富的插件生态(如失败重试、并发执…

搭建BOA服务器

BOA服务器是嵌入式常用的服务器类型,嵌入式程序作为后端时候如果想配合网页进行显示,利用BOA服务器搭建网络界面是不错的选择 首先下载boa官方安装包 Boa Webserver 下载后传输到Ubuntu随便文件夹,解压 tar -xvf boa-0.94.13.tar.gz 进入…

C# OPC DA获取DCS数据(提前配置DCOM)

OPC DA配置操作手册 配置完成后,访问远程ip,就能获取到服务 C#使用Interop.OPCAutomation采集OPC DA数据,支持订阅(数据变化)、单个读取、单个写入、断线重连

Ubuntu20.04搭建gerrit code review

一、环境准备 1. 安装 Java 环境‌ Gerrit 依赖 Java 运行环境(推荐 JDK 8): sudo apt install openjdk-11-jdk 验证安装: java -version ‌2. 安装 Git sudo apt install git ‌3. 可选依赖 数据库‌:Gerrit …

【FSM-3: 串行序列】

FSM-3:串行序列 1 Serial receiver FSM使用总结: 所有涉及输出的driver原则上用cur_sta;若是使用nxt_sta的相当于是提前一拍知道结果,所以对于输出必须要使用clocked reg,这样才能和cur_sta对应起来;描述声…

蓝桥杯 之 前缀和与查分

文章目录 题目求和棋盘挖矿 前缀和有利于快速求解 区间的和、异或值 、乘积等情况差分是前缀和的反操作 前缀和 一维前缀和: # 原始的数组num,下标从1到n n len(num) pre [0]*(n1) for i in range(n):pre[i1] pre[i] num[i] # 如果需要求解num[l] 到num[r] 的区…

国产化板卡设计原理图:2330-基于FMC接口的JFM7K325T PCIeX4 3U PXIe接口卡

基于FMC接口的JFM7K325T PCIeX4 3U PXIe接口卡 一、板卡概述 本板卡基于 FPGAJFM7K325T 芯片,pin_to_pin兼容FPGAXC7K410T-2FFG900 ,支持PCIeX8、64bit DDR3容量2GByte,HPC的FMC连接器,板卡支持PXIE标准协议,其中XJ3…

计算机视觉之dlib人脸关键点绘制及微笑测试

dlib人脸关键点绘制及微笑测试 目录 dlib人脸关键点绘制及微笑测试1 dlib人脸关键点1.1 dlib1.2 人脸关键点检测1.3 检测模型1.4 凸包1.5 笑容检测1.6 函数 2 人脸检测代码2.1 关键点绘制2.2 关键点连线2.3 微笑检测 1 dlib人脸关键点 1.1 dlib dlib 是一个强大的机器学习库&a…

一周学会Flask3 Python Web开发-SQLAlchemy连接Mysql数据库

锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili app.py下,我们先配置数据库连接,然后写一个简单sql测试。 连接配置,包括用户名&#xff…

blender看不到导入的模型

参考:blender 快捷键 常见问题_blender材质预览快捷键-CSDN博客 方法一:视图-裁剪起点,设置一个很大的值 方法二:选中所有对象,对齐视图-视图对齐活动项-选择一个视图

CES Asia 2025增设未来办公教育板块,科技变革再掀高潮

作为亚洲消费电子领域一年一度的行业盛会,CES Asia 2025(第七届亚洲消费电子技术贸易展)即将盛大启幕。今年展会规模再度升级,预计将吸引超过500家全球展商参展,专业观众人数有望突破10万。除了聚焦人工智能、物联网、…

【目标检测】【NeuralPS 2023】Gold-YOLO:通过收集与分发机制实现的高效目标检测器

Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism Gold-YOLO:通过收集与分发机制实现的高效目标检测器 0.论文摘要 在过去的几年中,YOLO系列模型已成为实时目标检测领域的领先方法。许多研究通过修改架构、增强数…

利用python实现对Excel文件中数据元组的自定义排序

问题引入: 假设你是一个浙江省水果超市的老板,统筹11个下辖地市的水果产量。假设11个地市生产的水果包括:苹果、香蕉和西瓜。你如何快速得到某种水果产量突出(排名前几)的地市?产量落后(排名后…

数学建模笔记——层次分析法(AHP)

本文借鉴了数学建模清风老师的视频和课件,如有错误欢迎大家批评指正。原视频地址:清风数学建模:https://www.bilibili.com/video/BV1DW411s7wihttps://www.bilibili.com/video/BV1DW411s7wi 1.预备知识 层次分析法: 层次分析法(The Analytic Hierarchy Process,AHP)是一…

koa-session设置Cookie后获取不到

在谷歌浏览器中请求获取不到cookie问题之一(谷歌安全策略) 场景 前端使用 axios 请求,项目地址:http://192.168.8.1:5173 import axios from axiosconst request axios.create({baseURL: http://127.0.0.1:3001/,timeout: 60000,…