Spark编程基础

一、RDD入门

1.RDD是什么?

RDD是一个容错的、只读的、可进行并行操作的数据结构,是一个分布在集群各个节点中的存放元素的集合,即弹性分布式数据集。

2.RDD的三种创建方式

  • 第一种是将程序中已存在的集合(如集合、列表、数组)转换成RDD。
  • 第二种是读取外部数据集来创建RDD。
  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.1准备数据:将程序中已存在的集合(如集合、列表、数组)转换成RDDval rdd1 = sc.parallelize(List(1,2,3,4))val rdd2 = sc.makeRDD(List(1,2,3,4))//2.2准备数据:读取外部数据集来创建RDDval rdd3 = sc.textFile("dataset/words.txt")//3.查看数据rdd1.collect().foreach(println)println("-------------------------")rdd2.collect().foreach(println)println("-------------------------")rdd3.collect().foreach(println)}
  • 第三种是对已有RDD进行转换得到新的RDD(在RDD的操作方法中讲解)。

 二、单个RDD的转换操作

Spark RDD提供了丰富的操作方法(函数)用于操作分布式的数据集合,包括转换操作和行动操作两部分。

  • 转换操作:可以将一个RDD转换为一个新的RDD,但是转换操作是懒操作,不会立刻执行计算;
  • 行动操作:是用于触发转换操作的操作,这时才会真正开始进行计算。

1)map()方法

作用:把 RDD 中的数据 一对一 的转为另一种形式。

格式:def map[U: ClassTag](f: T ⇒ U): RDD[U]

Map 算子是 原RDD → 新RDD 的过程, 传入函数的参数是原 RDD 数据, 返回值是经过函数转换的新 RDD 的数据。

 def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,2,3,4))//3.RDD的转换操作mapvar rdd2 = rdd1.map(x => x * 10)//4.打印数据rdd2.collect().foreach(println)//10 20 30 40}

2)flatMap()方法

作用:flatMap 算子和 Map 算子类似, 但是 flatMap 是一对多。

格式:def flatMap[U: ClassTag](f: T ⇒ List[U]): RDD[U]

参数是原 RDD 数据, 返回值是经过函数转换的新 RDD 的数据, 需要注意的是返回值是一个集合, 集合中的数据会被展平后再放入新的 RDD。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List("How are you","I am fine","What about you"))//3.RDD的转换操作flatMapvar rdd2 = rdd1.flatMap(x => x.split(" "))//4.打印数据rdd2.collect().foreach(println) //How are you I am fine What about you}

3)sortBy()方法

作用:用于对标准RDD进行排序,有3个可输入参数。

格式:def sortBy(func, ascending, numPartitions)

参数:func指定按照哪个字段来排序,通过这个函数返回要排序的字段;scending 是否升序,默认是true,即升序排序,如果需要降序排序那么需要将参数的值设置为false。;numPartitions 分区数。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List((1,3),(45,2),(7,6)))//3.RDD的转换操作sortBy,按照元组第二个值进行false降序val rdd2 = rdd1.sortBy(x =>x._2,false,1)//4.打印数据 rdd2.collect().foreach(println) //(7,6) (1,3) (45,2)}

4)mapPartitionsWithIndex()方法

作用:对RDD中的每个分区(带有下标)进行操作,通过自己定义的一个函数来处理。

格式:def mapPartitionsWithIndex[U](f: (Int, Iterator[T]) => Iterator[U])

参数:f 是函数参数,接收两个参数:
       (1)Int:代表分区号
       (2)Iterator[T]:分区中的元素
       (3)返回:Iterator[U]:操作完后,返回的结果

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据,并设置为2个分区val rdd1 = sc.parallelize(List(1,2,3,4,5),2)//3.RDD的转换操作mapPartionsWithIndexval rdd2 = rdd1.mapPartitionsWithIndex((index,it)=>{it.toList.map(x=>"["+index+","+x+"]").iterator})//4.打印数据:【分区编号,数据】rdd2.collect().foreach(println) //[0,1] [0,2] [1,3] [1,4] [1,5]}

5)filter()方法

作用:是一种转换操作,用于过滤RDD中的元素。

格式:def filter(f: T => Boolean): RDD[T]

将返回值为true的元素保留,将返回值为false的元素过滤掉,最后返回一个存储符合过滤条件的所有元素的新RDD。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,2,3,4))//3.RDD的转换操作filter,过滤偶数val rdd2 = rdd1.filter(x => x%2==0)//4.打印数据rdd2.collect().foreach(println) //2 4}

6)distinct()方法

作用:是一种转换操作,用于RDD的数据去重,去除两个完全相同的元素,没有参数。

格式:def distinct(): RDD[T]

将数据集中重复的数据去重,返回一个没有重复元素的新RDD。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,1,2,3,3))//3.RDD的转换操作filterval rdd2 = rdd1.distinct()//4.打印数据rdd2.collect().foreach(println) //1 2 3}

三、多个RDD的集合操作

1)union()方法

作用:是一种并集转换操作,用于将两个RDD合并成一个,不进行去重操作,而且两个RDD中每个元素中的值的数据类型需要保持一致

格式:def union(other: RDD[T]): RDD[T]

对源 RDD 和参数 RDD 求并集后返回一个新的 RDD。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,2,3,4))val rdd2 = sc.parallelize(List(1,3,5,6))//3.RDD的转换操作unionval rdd3 = rdd1.union(rdd2)//4.打印数据rdd3.collect().foreach(println) //1,2,3,4,1,3,5,6}

2)intersection()方法

作用:是一种交集转换操作,用于将求出两个RDD的共同元素。

格式:def intersection(other: RDD[T]): RDD[T]

对源 RDD 和参数 RDD 求交集后返回一个新的 RDD,两个RDD的顺序不会影响结果。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,2,3,4))val rdd2 = sc.parallelize(List(1,2))//3.RDD的转换操作intersectionval rdd3 = rdd1.intersection(rdd2)//4.打印数据rdd3.collect().foreach(println) //1,2}

3)subtract()方法

作用:是一种补集转换操作,用于将前一个RDD中在后一个RDD出现的元素删除,返回值为前一个RDD去除与后一个RDD相同元素后的剩余值所组成的新的RDD。

格式:def subtract(other: RDD[T]): RDD[T]

将原RDD里和参数RDD里相同的元素去掉后返回一个新的 RDD,两个RDD的顺序会影响结果。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,2,3,4))val rdd2 = sc.parallelize(List(1,2,5))//3.RDD的转换操作subtractval rdd3 = rdd1.subtract(rdd2)val rdd4 = rdd2.subtract(rdd1)//4.打印数据rdd3.collect().foreach(println) //3,4println("----------------------")rdd4.collect().foreach(println) //5}

4)cartesian()方法

作用:是一种求笛卡儿积操作,用于将两个集合的元素两两组合成一组。

格式:def cartesian(other: RDD[T]): RDD[T]

将原RDD里的每个元素都和参数RDD里的每个组合成一组,返回一个新的RDD。两个RDD的顺序会影响结果。

 def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(1,3,4))val rdd2 = sc.parallelize(List(1,2))//3.RDD的转换操作cartesianval rdd3 = rdd1.cartesian(rdd2)val rdd4 = rdd2.cartesian(rdd1)//4.打印数据rdd3.collect().foreach(println) //(1,1)    (1,2)    (3,1)    (3,2)    (4,1)    (4,2)println("----------------------")rdd4.collect().foreach(println) //(1,1)    (1,3)    (1,4)    (2,1)    (2,3)    (2,4)}

四、单个键值对RDD的转换操作

Spark的大部分RDD操作都支持所有种类的单值RDD,但是有少部分特殊的操作只能作用于键值对类型的RDD。键值对RDD由一组组的键值对组成,这些RDD被称为PairRDD。PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口。

1)创建键值对RDD

1.将一个普通RDD通过map转化为Pair RDD。当需要将一个普通的RDD转化为一个PairRDD时可以使用map函数来进行操作,传递的函数需要返回键值对。

2.通过List直接创建Pair RDD。

3.使用zip()方法用于将两个RDD组成Pair RDD。要求两个及元素数量相同,否则会抛出异常。 

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List("I like spark","He likes spark"))//3.1 通过flatMap和map方法将一个普通的RDD转化为一个键值对RDDval rdd2 = rdd1.flatMap(x => x.split(" "))val rdd3 = rdd2.map(x => (x,1))//3.2 通过List直接创建Pair RDDval rdd4 = sc.parallelize(List(("张三",100),("李四",90),("王五",80)))//3.3 使用zip()方法用于将两个RDD组成Pair RDDval dataRdd1 = sc.parallelize(List(1,2,3),2)val dataRdd2 = sc.parallelize(List("A","B","C"),2)val dataRdd3 = dataRdd1.zip(dataRdd2)//4.打印数据rdd2.collect().foreach(println) //(I,like,spark,He,likes,spark)println("---------------------")rdd3.collect().foreach(println) //(I,1) (like,1) (spark,1) (He,1) (likes,1) (spark,1)println("---------------------")rdd4.collect().foreach(println) //(张三,100) (李四,90)  (王五,80)println("---------------------")dataRdd3.collect().foreach(println) //(1,A) (2,B) (3,C)}

2)键值对RDD的keys和values方法

键值对RDD,包含键和值两个部分。 Spark提供了两种方法,分别获取键值对RDD的键和值。

  • keys方法返回一个仅包含键的RDD。
  • values方法返回一个仅包含值的RDD。
  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(("张三",100),("李四",90),("王五",80)))//3.1 获取keysval rdd2 = rdd1.keys//3.2 获取valuesval rdd3 = rdd1.values//3.打印数据rdd2.collect().foreach(println) //张三 李四 王五println("---------------------")rdd3.collect().foreach(println) //100 90  80}

3)键值对RDD的reduceByKey()

作用:将相同键的前两个值传给输入函数,产生一个新的返回值,新产生的返回值与RDD中相同键的下一个值组成两个元素,再传给输入函数,直到最后每个键只有一个对应的值为止。

格式:def reduceByKey(func: (V, V) => V): RDD[(K, V)]

可以将数据按照相同的 Key 对 Value 进行聚合。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List("I like spark","He likes spark"))//3.1 通过flatMap和map方法将一个普通的RDD转化为一个键值对RDDval rdd2 = rdd1.flatMap(x => x.split(" "))val rdd3 = rdd2.map(x => (x,1)) // (I,1) (like,1) (spark,1) (He,1) (likes,1) (spark,1)//3.2 使用reduceByKey将相同键的值进行相加,统计词频val rdd4 = rdd3.reduceByKey((a,b) => a+b)//4.打印数据rdd4.collect().foreach(println) //(I,1) (He,1) (spark,2) (like,1) (likes,1)}

3)键值对RDD的groupByKey()

作用:按照 Key 分组, 和 reduceByKey 有点类似, 但是 groupByKey 并不求聚合,只是列举 Key 对应的所有 Value。

格式:def groupByKey(): RDD[(K, Iterable[V])]

对于一个由类型K的键和类型V的值组成的RDD,通过groupByKey()方法得到的RDD类型是[K,Iterable[V]],可以将数据源的数据根据 key 对 value 进行分组。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(("a",1),("a",2),("b",1),("c",1),("c",1)))//3.使用groupByKey进行分组val rdd2 = rdd1.groupByKey()//4.使用map方法查看分组后每个分组中的值的数量val rdd3 = rdd2.map(x => (x._1,x._2.size))//5.打印数据rdd2.collect().foreach(println) //(a,CompactBuffer(1, 2)) (b,CompactBuffer(1)) (c,CompactBuffer(1, 1))rdd3.collect().foreach(println) //(a,2) (b,1) (c,2)}

五、多个键值对RDD的转换操作

在Spark中,键值对RDD提供了很多基于多个RDD的键进行操作的方法。

1)join()方法

作用:用于根据键,对两个RDD进行内连接,将两个RDD中键相同的数据的值存放在一个元组中,最后只返回两个RDD中都存在的键的连接结果。

格式:def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的。

def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(("a",1),("b",2),("c",3)))val rdd2 = sc.parallelize(List(("a",2),("b",4),("e",5)))//3.使用join进行内连接val rdd3 = rdd1.join(rdd2)//4.打印数据rdd3.collect().foreach(println) //(a,(1,2)) (b,(2,4))}

2)rightOuterJoin()方法

作用:用于根据键,对两个RDD进行右外连接,连接结果是右边RDD的所有键的连接结果,不管这些键在左边RDD中是否存在。

格式:def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

类似于 SQL 语句的右外连接。如果在左边RDD中有对应的键,那么连接结果中值显示为Some类型值;如果没有,那么显示为None值。

3)leftOuterJoin()方法

作用:用于根据键,对两个RDD进行左外连接,连接结果是左边RDD的所有键的连接结果,不管这些键在右边RDD中是否存在。

格式:def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

类似于 SQL 语句的右外连接。如果在右边RDD中有对应的键,那么连接结果中值显示为Some类型值;如果没有,那么显示为None值。

4)fullOuterJoin()方法

作用:用于对两个RDD进行全外连接,保留两个RDD中所有键的连接结果。

格式:def fullOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

类似于 SQL 语句的全外连接。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(("a",1),("b",2),("c",3)))val rdd2 = sc.parallelize(List(("a",2),("b",4),("e",5)))//3.使用rightOuterJoin进行右外连接val rdd3 = rdd1.rightOuterJoin(rdd2)//4.使用leftOuterJoin进行左外连接val rdd4 = rdd1.leftOuterJoin(rdd2)//5.使用fullOuterJoin进行全外连接val rdd5 = rdd1.fullOuterJoin(rdd2)//6.打印数据rdd3.collect().foreach(println) //(a,(Some(1),2)) (b,(Some(2),4)) (e,(None,5))println("--------------------")rdd4.collect().foreach(println) //(a,(1,Some(2))) (b,(2,Some(4))) (c,(3,None))println("--------------------")rdd5.collect().foreach(println) //(a,(Some(1),Some(2))) (b,(Some(2),Some(4))) (c,(Some(3),None)) (e,(None,Some(5)))}

5)sortByKey()方法

作用:作用于Key-Value形式的RDD,并对Key进行排序。

格式:def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
 : RDD[(K, V)]

参数:scending 是否升序,默认是true,即升序排序,如果需要降序排序那么需要将参数的值设置为false。numPartitions 为分区数。

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List((1,3),(45,2),(7,6)))//3.RDD的转换操作sortByKeyval rdd2 = rdd1.sortByKey(true) //按key进行升序val rdd3 = rdd1.sortByKey(false) //按key进行降序//4.打印数据rdd2.collect().foreach(println)println("---------------------")rdd3.collect().foreach(println)}

6)lookup()方法

作用:作用于键值对RDD,返回指定键的所有值。

格式:def lookup(key : K) : scala.Seq[V]

作用于K-V类型的RDD上,返回指定K的所有V值

  def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//2.准备数据val rdd1 = sc.parallelize(List(("张三",100),("李四",90),("王五",80)))//3.使用lookup()方法查找指定键的值val result = rdd1.lookup("李四")//4.打印数据println(result) //WrappedArray(90)}

7)combineByKey()方法

作用:用于将键相同的数据聚合,并且允许返回,类型与输入数据的类型不同的返回值。

格式:def combineByKey[C](
                 createCombiner: V => C,
                 mergeValue: (C, V) => C,
                 mergeCombiners: (C, C) => C): RDD[(K, C)]

combineByKey()方法接收3个重要的参数,具体说明如下:

  • createCombiner:V=>C,V是键值对RDD中的值部分,将该值转换为另一种类型的值C,C会作为每一个键的累加器的初始值。
  • mergeValue:(C,V)=>C,该函数将元素V聚合到之前的元素C(createCombiner)上(这个操作在每个分区内进行)。
  • mergeCombiners:(C,C)=>C,该函数将两个元素C进行合并(这个操作在不同分区间进行)。

小练习:将数据 List(("zhangsan", 99.0), ("zhangsan", 96.0), ("lisi", 97.0), ("lisi", 98.0), ("zhangsan", 97.0)),求每个 key的平均值。

 def main(args: Array[String]): Unit = {//1.入口:创建SparkContextval conf = new SparkConf().setMaster("local[*]").setAppName("spark")val sc = new SparkContext(conf)//需求:将数据 List(("zhangsan", 99.0), ("zhangsan", 96.0), ("lisi", 97.0), ("lisi", 98.0), ("zhangsan", 97.0)),求每个 key的平均值//2.准备数据val rdd1 = sc.parallelize(List(("zhangsan", 99.0), ("zhangsan", 96.0), ("lisi", 97.0), ("lisi", 98.0), ("zhangsan", 97.0)))//3.1 通过combineByKey方法将RDD安装key进行聚合,返回值形式:(key,(值总和,key个数))val rdd2 = rdd1.combineByKey(score => (score,1),(scoreCount:(Double,Int),newScore:Double) => (scoreCount._1+newScore,scoreCount._2+1),(scoreCount1:(Double,Int),scoreCount2:(Double,Int)) => (scoreCount1._1+scoreCount2._1,scoreCount1._2+scoreCount2._2))//打印combineByKey聚合之后的数据,形式:(key,(值总和,key个数))rdd2.collect().foreach(println) //(zhangsan,(292.0,3)) (lisi,(195.0,2))//3.2 将按值聚合相加后的结果(zhangsan,(292.0,3)) (lisi,(195.0,2)),求每个人的平均值,返回值形式:(key,平均值)val result = rdd2.map(item =>(item._1,item._2._1/item._2._2))//4 打印数据println("------------------")result.collect().foreach(println)}

combineByKey()方法执行过程的图解:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/299773.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ThingsBoard通过MQTT发送遥测数据

MQTT基础 客户端 MQTT连接 遥测上传API 案例 MQTT基础 MQTT是一种轻量级的发布-订阅消息传递协议,它可能最适合各种物联网设备。 你可以在此处找到有关MQTT的更多信息,ThingsBoard服务器支持QoS级别0(最多一次)和QoS级别1&…

2024-2029年中国曲轴行业市场深度调研及发展前景预测报告

我国曲轴行业总产值有所增长 福达股份为头部企业 曲轴是发动机、内燃机中的重要零部件,可以承受连杆传来的力,并将其转变为转矩,通过曲轴输出后,带动发动机上其他附件进行工作。随着生产技术逐渐进步,曲轴的种类逐渐增…

第十二天--二维数组的彻底解刨--地址

1.二维数组我们用父子的地址来称呼二维数组的地址 比如arr[3][4] 这里的arr是二维数组的首地址,也是父数组的首地址,也是子数组的首地址 arr1父数组的地址偏移1,实际上是偏移了4*416个字节 arr[0]是子数组的首地址,arr[0]1是子数…

AIGC实战——ProGAN(Progressive Growing Generative Adversarial Network)

AIGC实战——ProGAN 0. 前言1. ProGAN2. 渐进式训练3. 其他技术3.1 小批标准差3.2 均等学习率3.3 逐像素归一化 4. 图像生成小结系列链接 0. 前言 我们已经学习了使用生成对抗网络 (Generative Adversarial Network, GAN) 解决各种图像生成任务。GAN 的模型架构和训练过程具有…

NzN的数据结构--实现双向链表

上一章中,我们学习了链表中的单链表,那今天我们来学习另一种比较常见的链表--双向链表!! 目录 一、双向链表的结构 二、 双向链表的实现 1. 双向链表的初始化和销毁 2. 双向链表的打印 3. 双向链表的头插/尾插 4. 双向链表的…

数据如何才能供得出、流得动、用得好、还安全

众所周知,数据要素已经列入基本生产要素,同时成立国家数据局进行工作统筹。目前数据要素如何发挥其价值,全国掀起了一浪一浪的热潮。 随着国外大语言模型的袭来,国内在大语言模型领域的应用也大放异彩,与此同时&#x…

【Web】纯萌新的BUUCTF刷题日记Day1

目录 [RoarCTF 2019]Easy Java [网鼎杯 2018]Fakebook [CISCN2019 华北赛区 Day2 Web1]Hack World [BJDCTF2020]The mystery of ip [网鼎杯 2020 朱雀组]phpweb [BSidesCF 2020]Had a bad day [BJDCTF2020]ZJCTF,不过如此 [BUUCTF 2018]Online Tool [GXYCTF…

数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 所属的专栏:数据分析系统化教学,零基础到进阶实战 景天的主页:景天科技苑 文章目录 Streamlit什么是streamli…

刷题之Leetcode283题(超级详细)

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nu…

Rasa X 聊天机器人(部署篇)

一、前言 我们先来了解下 Rasa 是什么?Rasa 是一个开源的自然语言处理 (NLP) 框架,用于构建基于文本的对话系统,如聊天机器人和语音助手。接下来再了解下 Rasa X 是什么?Rasa X 是建立在 Rasa 框架之上的图形用户界面 (GUI) 工具…

.NET8 和 Vue.js 的前后端分离

在.NET 8中实现前后端分离主要涉及到两个部分:后端API的开发和前端应用的开发。后端API通常使用ASP.NET Core来构建,而前端应用则可以使用任何前端框架或技术栈,比如Vue.js、React或Angular等。下面是一个简化的步骤指南,帮助你在…

服装店连锁加盟软件系统权威榜单,商陆花连锁日记再次登顶

随着零售业的不断发展和消费者需求的日益多样化,服装店连锁加盟系统作为商家经营的重要工具,其性能和功能已成为衡量服装连锁店竞争力的关键因素。2023年,经过深入的市场调研和专家评审,我们正式发布本年度服装店连锁加盟系统的权…

Java项目——设计一个消息队列(一)【消息队列的背景知识、项目的需求分析、项目的模块划分】

Java项目——设计一个消息队列 ⼀. 消息队列背景知识⼆. 需求分析核⼼概念核⼼ API交换机类型 (Exchange Type)持久化⽹络通信消息应答 三. 模块划分服务器模块客户端模块公共模块 ⼀. 消息队列背景知识 曾经我们学习过 阻塞队列 (BlockingQueue) , 我们说, 阻塞队列最⼤的⽤途…

超市商品管理系统的设计与实现(全套资料)

一、系统架构 前端:vue | view-design 后端:springboot | mybatis-plus 环境:jdk17 | mysql8 | maven | nodejs | redis 二、代码及数据库 三、功能介绍 01. web端-首页 02. web端-超市概况 03. web端-超市区域 04. …

前端实现打开新标签页后,再次定位到该标签页

需求 A 页面中点击按钮可以打开新的标签页 B 并且向 B 页面发送消息数据。 当新的标签页 B 未关闭且符合同源策略时&#xff0c;再次点击按钮&#xff0c;可以自动跳转到标签页 B 并且发生消息数据。 B.html <script>window.onmessage evt > {console.log(evt.d…

彩虹易支付商户进件插件介绍

插件介绍 商户进件插件&#xff0c;支持多个进件渠道类型&#xff0c;并且可扩展。目前已有《支付宝服务商》、《支付宝直付通》、《微信支付服务商》、《微信支付收付通》进件渠道类型。 支持管理员后台和用户中心提交进件&#xff0c;支持付费进件&#xff0c;用户组限制等…

场景文本检测识别学习 day01(传统OCR的流程、常见的损失函数)

传统OCR的流程 传统OCR&#xff1a;传统光学字符识别常见的的模型主要包括以下几个步骤来识别文本 预处理&#xff1a;预处理是指对输入的图像进行处理&#xff0c;以提高文字识别的准确率。这可能包括调整图像大小、转换为灰度图像、二值化&#xff08;将图像转换为黑白两色&…

一则 MySQL 从节点 hung 死问题分析

作者通过 MySQL 从节点的一个 hung 问题&#xff0c;对数据库连接、日志、innodb status 输出等分析&#xff0c;再结合源码、堆栈等最终明确为由于 redo日志配置不合理导致 hung 死问题根本原因。 作者&#xff1a;李锡超&#xff0c;一个爱笑的江苏苏商银行 数据库工程师&…

2024年最新版FL Studio21.2.3 Build 4004 for Mac 版激活下载和图文激活教程

FL studio21中文别名水果编曲软件&#xff0c;是一款全能的音乐制作软件&#xff0c;包括编曲、录音、剪辑和混音等诸多功能&#xff0c;让你的电脑编程一个全能的录音室&#xff0c;它为您提供了一个集成的开发环境&#xff0c;使用起来非常简单有效&#xff0c;您的工作会变得…

【多线程】Callable详解

Callable接口 先看看Callable接口的源码: Callable是一个函数式接口&#xff0c;此时就可以用lambda表达式更简洁地使用它。Callable是个泛型接口&#xff0c;只有一个方法call&#xff0c;该方法返回类型就是传递进来的V类型。call方法还支持抛出异常. 与Callable对应的是Ru…