使用pytorch构建有监督的条件GAN(conditional GAN)网络模型

本文为此系列的第四篇conditional GAN,上一篇为WGAN-GP。文中在无监督的基础上重点讲解作为有监督对比无监督的差异,若有不懂的无监督知识点可以看本系列第一篇。

原理

  • 有条件与无条件
    在这里插入图片描述
    如图投进硬币随机得到一个乒乓球的例子可以看成是一个无监督的GAN,硬币作为输入(noise),出乒乓球的机器作为生成器(generator),生成的乒乓球作为生成器生成的example。
    从这个例子中我们可以知道生成的乒乓球有什么颜色的,因为这些都是我们训练的数据分布,但我们不知道生成的是什么颜色的乒乓球,因为是无监督的。
    在这里插入图片描述
    这个例子中,投掷硬币和输入想要的饮料名称例如红色的苏打水,就会随机投出一瓶选定类型的红色苏打水,而不会投出绿色的雪碧。
    这里不同于上面的例子的是输入中多了一个饮料名称(class),以及输出可以选择想要的类型。这里输入的类别必须在机器给定的类别之内选择不能选择没有给定的类别,就好像我们训练时只训练这些类别生成器就只知道这些类别的东西,其他类别的东西就会出错。
    这样可以选择类别输出的例子就是有监督的。

    注意:这里虽然可以选择类别输出,但不能控制特性输出,比如我们可以选择投出一瓶苏打水,但不能选择固定生产日期的苏打水,或者某品牌的苏打水等,这类可控制特性输出的叫做Controllable
    GAN,在下一篇作讲解。

    在这里插入图片描述

    这就是有条件与无条件的区别,有条件的在训练时数据需要有标签,前向传播时输入生成器还需要多加一个class向量。

  • 输入
    在这里插入图片描述
    如图,在无监督的GAN中,噪声向量也是一维的;在有监督中的GAN中,我们所需的class也要是one-hot形式的一维向量(长度为类别数量)。但我们不是直接将两个向量输入进生成器中,而是合成一个向量。
    在这里插入图片描述
    作为generator的输入如图:
    在这里插入图片描述
    输入进discriminator也是需要有class的信息
    在这里插入图片描述
    在这里插入图片描述
    但是不是想上图这样分开作为两个向量的输入,而是也是合成为一个向量进行输入。但是图像信息作为三维向量,类别信息作为一维向量,就需要进行处理:
    在这里插入图片描述
    类别信息要先转为one-hot形式,然后每个类别处理成一个image_height * image_width的二维向量作为一个channel与图像信息进行concat。

代码

model.py

from torch import nnclass Generator(nn.Module):def __init__(self, input_dim=10, im_chan=1, hidden_dim=64):super(Generator, self).__init__()self.input_dim = input_dim# Build the neural networkself.gen = nn.Sequential(self.make_gen_block(input_dim, hidden_dim * 4),self.make_gen_block(hidden_dim * 4, hidden_dim * 2, kernel_size=4, stride=1),self.make_gen_block(hidden_dim * 2, hidden_dim),self.make_gen_block(hidden_dim, im_chan, kernel_size=4, final_layer=True),)def make_gen_block(self, input_channels, output_channels, kernel_size=3, stride=2, final_layer=False):if not final_layer:return nn.Sequential(nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),nn.BatchNorm2d(output_channels),nn.ReLU(inplace=True),)else:return nn.Sequential(nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),nn.Tanh(),)def forward(self, noise):x = noise.view(len(noise), self.input_dim, 1, 1)return self.gen(x)class Discriminator(nn.Module):def __init__(self, im_chan=1, hidden_dim=64):super(Discriminator, self).__init__()self.disc = nn.Sequential(self.make_disc_block(im_chan, hidden_dim),self.make_disc_block(hidden_dim, hidden_dim * 2),self.make_disc_block(hidden_dim * 2, 1, final_layer=True),)def make_disc_block(self, input_channels, output_channels, kernel_size=4, stride=2, final_layer=False):if not final_layer:return nn.Sequential(nn.Conv2d(input_channels, output_channels, kernel_size, stride),nn.BatchNorm2d(output_channels),nn.LeakyReLU(0.2, inplace=True),)else:return nn.Sequential(nn.Conv2d(input_channels, output_channels, kernel_size, stride),)def forward(self, image):disc_pred = self.disc(image)return disc_pred.view(len(disc_pred), -1)

train.py

import torch
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import torch.nn.functional as F
import matplotlib.pyplot as plt
from model import *
torch.manual_seed(0) # Set for our testing purposes, please do not change!def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28), nrow=5, show=True):'''Function for visualizing images: Given a tensor of images, number of images, andsize per image, plots and prints the images in an uniform grid.'''image_tensor = (image_tensor + 1) / 2image_unflat = image_tensor.detach().cpu()image_grid = make_grid(image_unflat[:num_images], nrow=nrow)plt.imshow(image_grid.permute(1, 2, 0).squeeze())if show:plt.show()def get_noise(n_samples, input_dim, device='cpu'):'''Function for creating noise vectors: Given the dimensions (n_samples, input_dim)creates a tensor of that shape filled with random numbers from the normal distribution.Parameters:n_samples: the number of samples to generate, a scalarinput_dim: the dimension of the input vector, a scalardevice: the device type'''return torch.randn(n_samples, input_dim, device=device)def get_one_hot_labels(labels, n_classes):return F.one_hot(labels,n_classes)def combine_vectors(x, y):combined = torch.cat((x.float(),y.float()), 1)return combinedmnist_shape = (1, 28, 28)
n_classes = 10criterion = nn.BCEWithLogitsLoss()
n_epochs = 200
z_dim = 64
display_step = 500
batch_size = 128
lr = 0.0002
device = 'cuda'transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,)),
])dataloader = DataLoader(MNIST('.', download=False, transform=transform),batch_size=batch_size,shuffle=True)def get_input_dimensions(z_dim, mnist_shape, n_classes):generator_input_dim = z_dim + n_classesdiscriminator_im_chan = mnist_shape[0] + n_classesreturn generator_input_dim, discriminator_im_changenerator_input_dim, discriminator_im_chan = get_input_dimensions(z_dim, mnist_shape, n_classes)gen = Generator(input_dim=generator_input_dim).to(device)
gen_opt = torch.optim.Adam(gen.parameters(), lr=lr)
disc = Discriminator(im_chan=discriminator_im_chan).to(device)
disc_opt = torch.optim.Adam(disc.parameters(), lr=lr)def weights_init(m):if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):torch.nn.init.normal_(m.weight, 0.0, 0.02)if isinstance(m, nn.BatchNorm2d):torch.nn.init.normal_(m.weight, 0.0, 0.02)torch.nn.init.constant_(m.bias, 0)
gen = gen.apply(weights_init)
disc = disc.apply(weights_init)cur_step = 0
generator_losses = []
discriminator_losses = []# UNIT TEST NOTE: Initializations needed for grading
noise_and_labels = False
fake = Falsefake_image_and_labels = False
real_image_and_labels = False
disc_fake_pred = False
disc_real_pred = Falsebest_gen_loss = float('inf')
last_gen_loss = 0for epoch in range(n_epochs):# Dataloader returns the batches and the labelsfor real, labels in tqdm(dataloader):cur_batch_size = len(real)# Flatten the batch of real images from the datasetreal = real.to(device)one_hot_labels = get_one_hot_labels(labels.to(device), n_classes)image_one_hot_labels = one_hot_labels[:, :, None, None]image_one_hot_labels = image_one_hot_labels.repeat(1, 1, mnist_shape[1], mnist_shape[2])### Update discriminator #### Zero out the discriminator gradientsdisc_opt.zero_grad()# Get noise corresponding to the current batch_sizefake_noise = get_noise(cur_batch_size, z_dim, device=device)noise_and_labels = combine_vectors(fake_noise, one_hot_labels)fake = gen(noise_and_labels)fake_image_and_labels = combine_vectors(fake, image_one_hot_labels)real_image_and_labels = combine_vectors(real, image_one_hot_labels)disc_fake_pred = disc(fake_image_and_labels.detach())disc_real_pred = disc(real_image_and_labels)disc_fake_loss = criterion(disc_fake_pred, torch.zeros_like(disc_fake_pred))disc_real_loss = criterion(disc_real_pred, torch.ones_like(disc_real_pred))disc_loss = (disc_fake_loss + disc_real_loss) / 2disc_loss.backward(retain_graph=True)disc_opt.step()# Keep track of the average discriminator lossdiscriminator_losses += [disc_loss.item()]### Update generator #### Zero out the generator gradientsgen_opt.zero_grad()fake_image_and_labels = combine_vectors(fake, image_one_hot_labels)# This will error if you didn't concatenate your labels to your image correctlydisc_fake_pred = disc(fake_image_and_labels)gen_loss = criterion(disc_fake_pred, torch.ones_like(disc_fake_pred))gen_loss.backward()gen_opt.step()# Keep track of the generator lossesgenerator_losses += [gen_loss.item()]if cur_step % display_step == 0 and cur_step > 0:gen_mean = sum(generator_losses[-display_step:]) / display_stepdisc_mean = sum(discriminator_losses[-display_step:]) / display_stepprint(f"Step {cur_step}: Generator loss: {gen_mean}, discriminator loss: {disc_mean}")show_tensor_images(fake)show_tensor_images(real)step_bins = 20x_axis = sorted([i * step_bins for i in range(len(generator_losses) // step_bins)] * step_bins)num_examples = (len(generator_losses) // step_bins) * step_binsplt.plot(range(num_examples // step_bins),torch.Tensor(generator_losses[:num_examples]).view(-1, step_bins).mean(1),label="Generator Loss")plt.plot(range(num_examples // step_bins),torch.Tensor(discriminator_losses[:num_examples]).view(-1, step_bins).mean(1),label="Discriminator Loss")plt.legend()plt.show()elif cur_step == 0:print("Congratulations! If you've gotten here, it's working. Please let this train until you're happy with how the generated numbers look, and then go on to the exploration!")cur_step += 1# Save generator modelif gen_loss < best_gen_loss:best_gen_loss = gen_losstorch.save(gen.state_dict(), 'best_generator.pth')last_gen_loss = gen_losstorch.save(gen.state_dict(), 'last_generator.pth')# test
import math
gen = gen.eval()checkpoint = torch.load('best_generator.pth')
gen.load_state_dict(checkpoint)
gen.to(device)n_interpolation = 9 # Choose the interpolation: how many intermediate images you want + 2 (for the start and end image)
interpolation_noise = get_noise(1, z_dim, device=device).repeat(n_interpolation, 1)def interpolate_class(first_number, second_number):first_label = get_one_hot_labels(torch.Tensor([first_number]).long(), n_classes)second_label = get_one_hot_labels(torch.Tensor([second_number]).long(), n_classes)# Calculate the interpolation vector between the two labelspercent_second_label = torch.linspace(0, 1, n_interpolation)[:, None]interpolation_labels = first_label * (1 - percent_second_label) + second_label * percent_second_label# Combine the noise and the labelsnoise_and_labels = combine_vectors(interpolation_noise, interpolation_labels.to(device))fake = gen(noise_and_labels)show_tensor_images(fake, num_images=n_interpolation, nrow=int(math.sqrt(n_interpolation)), show=False)start_plot_number = 1 # Choose the start digit
end_plot_number = 5 # Choose the end digitplt.figure(figsize=(8, 8))
interpolate_class(start_plot_number, end_plot_number)
_ = plt.axis('off')plot_numbers = [2, 3, 4, 5, 7]
n_numbers = len(plot_numbers)
plt.figure(figsize=(8, 8))
for i, first_plot_number in enumerate(plot_numbers):for j, second_plot_number in enumerate(plot_numbers):plt.subplot(n_numbers, n_numbers, i * n_numbers + j + 1)interpolate_class(first_plot_number, second_plot_number)plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0.1, wspace=0)
plt.show()
plt.close()n_interpolation = 9 # How many intermediate images you want + 2 (for the start and end image)# This time you're interpolating between the noise instead of the labels
interpolation_label = get_one_hot_labels(torch.Tensor([5]).long(), n_classes).repeat(n_interpolation, 1).float()def interpolate_noise(first_noise, second_noise):# This time you're interpolating between the noise instead of the labelspercent_first_noise = torch.linspace(0, 1, n_interpolation)[:, None].to(device)interpolation_noise = first_noise * percent_first_noise + second_noise * (1 - percent_first_noise)# Combine the noise and the labels againnoise_and_labels = combine_vectors(interpolation_noise, interpolation_label.to(device))fake = gen(noise_and_labels)show_tensor_images(fake, num_images=n_interpolation, nrow=int(math.sqrt(n_interpolation)), show=False)n_noise = 5 # Choose the number of noise examples in the grid
plot_noises = [get_noise(1, z_dim, device=device) for i in range(n_noise)]
plt.figure(figsize=(8, 8))
for i, first_plot_noise in enumerate(plot_noises):for j, second_plot_noise in enumerate(plot_noises):plt.subplot(n_noise, n_noise, i * n_noise + j + 1)interpolate_noise(first_plot_noise, second_plot_noise)plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0.1, wspace=0)
plt.show()
plt.close()

代码解析

  • 网络模型模块没啥可说的,就是生成器和鉴别器的输入channel改变了而已。
  • 一个是将类别信息转成one-hot形式的编码,一个是将两个向量concat成一个向量。
    在这里插入图片描述

比如类别为1,one-hot形式的编码就是第二个位置为1,其余位置为0,长度为类别的数量:
在这里插入图片描述

  • 计算生成器和鉴别器的输入向量的channel,生成器的输入channel为随机噪声的channel+类别数量,鉴别器的channel为生成图片的channel+类别数量。
    在这里插入图片描述
  • 对标签信息进行处理成输入discriminator的格式。首先对label进行one-hot格式处理,然后在最后扩展两个维度便于卷积操作,最后将一个one-hot向量中的每个类别(单个值)都复制成宽高与图像一致的二维向量。
    在这里插入图片描述
    首先我们可以打印出labels及其shape,可以看到有batch_size个标签,且是一维的。
    在这里插入图片描述
    然后打印出其one-hot向量及其shape。
    在这里插入图片描述
    然后打印出扩展维度后的向量及其shape,本来每个label的shape为[10],在最后插入两个维度后变成[10,1,1],相对于进行了两次unsqueeze(-1)操作。
    在这里插入图片描述
    在这里插入图片描述
    然后打印出复制操作后的向量及其shape,将每个label的shape从[10,1,1]变为[10,28,28]。这样就可以知道.repeat()函数中第一个参数1表示:
    • 在第一个维度(批量大小维度)上不进行重复,即不改变批量大小;
    • 第二个参数1表示在第二个维度(类别数维度)上不进行重复,即不改变类别数;
    • mnist_shape[1]表示在高度维度上重复的次数,即重复到与 MNIST图像的高度相匹配;
    • mnist_shape[2]表示在宽度维度上重复的次数,即重复到与 MNIST图像的宽度相匹配。
      在这里插入图片描述
      在这里插入图片描述
  • 显示中间过程模块如下,如果不想看中间过程或者嫌弃一直一个一个关掉窗口太麻烦的话可以直接注释掉这段。
    在这里插入图片描述
  • 到此为止训练部分都已经结束了,训练完保存了best模型和last模型在当前文件夹中。下面的test部分开始是对结果的检验。
    在这里插入图片描述
    这个模块是在两个不同的模式中进行插值,来查看两个模式生成的中间结果。
    • 首先.eval()是PyTorch中模型在评估模式下进行使用的,目的是为了在测试阶段时取消某些层(例如以下两个层)对输出结果的随机性的行为,从而获得更加稳定和可靠的预测结果。
      • 关闭Dropout层。在训练过程中,Dropout层会随机丢弃一部分神经元,起到过拟合的作用。而在评估过程中,为了保证每次的输出不具有随机性,Dropout 层通常会被关闭,使得所有神经元都参与到前向传播过程中。
      • 冻结Batch Normalization层。在训练过程中,BN层会根据每个批次的统计信息对输入进行标准化处理。而在评估过程中,也是因为为了保证每次的输出不具有随机性,BN层通常会被冻结,即使用训练时得到的均值方差来进行标准化。
    • 可以改变n_interpolation的值来查看两个结果的中间过程,如代码中赋值为9,有2个是结果其余7个是中间过程。具体实现方式是:
      • 首先使用torch.linspace函数生成从0到1的等间距的n_interpolation个数据点,然后扩展一个dimension,给每个值单独括起来。生成的这些值用于控制两个标签之间的插值比例。
      • first_label * (1 - percent_second_label) + second_label * percent_second_label然后通过加权的方式计算两个标签之间的插值标签。
      • 最后就是将得到的插值标签与随机噪声结合后送入generator中得到生成结果。
        在这里插入图片描述
  • 我们也可以同时可视化一组数字标签之间的插值结果。
    在这里插入图片描述
    这就是在给定的一组标签之间两两进行插值,得到最早的可视化结果。
    在这里插入图片描述
  • 上面是输入不同的class查看测试结果。下面测试一下保持class不变改变随机向量的结果。
    在这里插入图片描述
    插值原理与上面类似,只不过上面的中间过程是标签插值,这里是噪声插值,生成的插值比例是与随机噪声进行加权相乘计算。本代码这里是固定用数字5作为固定标签,也可以自己改变interpolation_label查看别的标签的结果。
    在这里插入图片描述

下一篇可控制生成GAN。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/300610.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器主机安全受到危害的严重性

为了让小伙伴们了解到服务器主机安全受到危害的严重性&#xff0c;以下详细说明一下&#xff1a;1. 数据泄露&#xff1a;如果服务器主机遭受攻击&#xff0c;攻击者可能会窃取敏感数据&#xff0c;如用户数据、商业秘密、机密文件等&#xff0c;导致数据泄露和商业机密的泄漏。…

Mac怎么调大音频音量?

Mac怎么调大音频音量&#xff1f;在使用 Mac 电脑时&#xff0c;有时可能会发现音频的音量不够大&#xff0c;特别是在观看视频、听音乐或进行视频会议时。不过&#xff0c;幸运的是&#xff0c;Mac 提供了多种方法来调大音频音量&#xff0c;让您更好地享受音乐和视频的乐趣。…

如何在 Node.js 中使用 bcrypt 对密码进行哈希处理

在网页开发领域中&#xff0c;安全性至关重要&#xff0c;特别是涉及到用户凭据如密码时。在网页开发中至关重要的一个安全程序是密码哈希处理。 密码哈希处理确保明文密码在数据库受到攻击时也难以被攻击者找到。但并非所有的哈希方法都是一样的&#xff0c;这就是 bcrypt 突…

34470A是德科技34470A数字万用表

181/2461/8938产品概述&#xff1a; Truevolt数字万用表&#xff08;34460A、34461A、34465A、34470A&#xff09;利用是德科技的新专利技术&#xff0c;使您能够快速获得见解、测量低功耗设备并保持校准的测量结果。Truevolt提供全方位的测量能力&#xff0c;具有更高的精度、…

15-1-Flex布局

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 Flex布局1 Flex容器和Flex项目2 Flex 容器属性2.1 主轴的方向2.2 主轴对齐方式…

亚马逊店铺引流:海外云手机的利用方法

在电商业务蓬勃发展的当下&#xff0c;亚马逊已经成为全球最大的电商平台之一&#xff0c;拥有庞大的用户群和交易量。在激烈的市场竞争中&#xff0c;如何有效地吸引流量成为亚马逊店铺经营者所关注的重点。海外云手机作为一项新兴技术工具&#xff0c;为亚马逊店铺的流量引导…

基于SSM的周边乡村旅游小程序

系统实现 游客注册通过注册窗口&#xff0c;进行在线填写自己的账号、密码、姓名、年龄、手机、邮箱等&#xff0c;信息编辑完成后核对信息无误后进行选择注册&#xff0c;系统核对游客所输入的账号信息是否准确&#xff0c;核对信息准确无误后系统进入到操作界面。 游客登录通…

Node.js进阶——Express

文章目录 一、初识Express1、概念2、安装3、使用3、托管静态资源4、nodemon 二、Express路由1、概念2、使用1&#xff09;简单使用2&#xff09;模块化路由 三、Express中间件1、介绍2、语法1&#xff09;基本语法2&#xff09;next函数作用3&#xff09;定义中间件函数4&#…

4.7学习总结

java学习 一.Stream流 (一.)概念: Stream将要处理的元素集合看作一种流&#xff0c;在流的过程中&#xff0c;借助Stream API对流中的元素进行操作&#xff0c;比如&#xff1a;筛选、排序、聚合等。Stream流是对集合&#xff08;Collection&#xff09;对象功能的增强&…

在python爬虫中如何处理cookie和session

使用python开发爬虫的过程中&#xff0c;遇到需要登录鉴权的一些页面&#xff0c;必不可少的会接触到cookie和session的使用。本文结合自己最近一次爬虫爬坑的经历&#xff0c;介绍在python爬虫中如何使用Cookie和Session Cookie和Session的介绍 Cookie Cookie 是一种用于跟…

脱单微信群|相亲脱单支招|手把手教你脱单

群里有太多优质单身男女生&#xff0c;你的脱单困惑&#xff0c;TA可能也遇到过。抬手在群里滴滴&#xff0c;即刻拥有一群有过相同问题的友友和运营客服帮忙。 点我进脱单群 点击 情感脱单问题&#xff0c;直接私信给樱桃情感老师&#xff0c;保护个人隐私和提升问题解决效率…

零信任安全模型:构建未来数字世界的安全基石

在数字化转型的浪潮中&#xff0c;云原生技术已成为推动企业创新和灵活性的关键力量&#x1f4a1;。然而&#xff0c;随着技术的进步和应用的广泛&#xff0c;网络安全威胁也日益严峻&#x1f513;&#xff0c;传统的网络安全模型已经难以应对复杂多变的网络环境。在这样的背景…

【代码随想录】哈希表

文章目录 242.有效的字母异位词349. 两个数组的交集202. 快乐数1. 两数之和454. 四数相加 II383. 赎金信15. 三数之和18. 四数之和 242.有效的字母异位词 class Solution {public boolean isAnagram(String s, String t) {if(snull || tnull || s.length()!t.length()){return …

性能优化-如何爽玩多线程来开发

前言 多线程大家肯定都不陌生&#xff0c;理论滚瓜烂熟&#xff0c;八股天花乱坠&#xff0c;但是大家有多少在代码中实践过呢&#xff1f;很多人在实际开发中可能就用用Async&#xff0c;new Thread()。线程池也很少有人会自己去建&#xff0c;默认的随便用用。在工作中大家对…

什么是GIF?MP4视频如何转换成GIF动图格式?

一&#xff0c;什么是GIF GIF的全称是Graphics Interchange Format&#xff0c;可译为图形交换格式&#xff0c;用于以超文本标志语言&#xff08;Hypertext Markup Language&#xff09;方式显示索引彩色图像&#xff0c;在因特网和其他在线服务系统上得到广泛应用。GIF是一种…

NzN的数据结构--二叉树part1

你叉叉&#xff0c;让你学数据结构你不学&#xff1b;你叉叉&#xff0c;让你看二叉树你不看。 今天我们来一起学习二叉树部分&#xff0c;先赞后看是好习惯。 一、树的概念及结构 1. 树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有…

合并主分支到子分支

参考&#xff1a;【Git】合并分支出现 Please enter a commit message to explain why this merge is necessary.-CSDN博客 git 如何将主分支(master)合并到子分支上_git 将主分支合并到子分支-CSDN博客 1、先切换到主分支master git checkout master 2、把主分支代码拉到本地…

【Threejs进阶教程-效果篇】1.Threejs文字与css2d/css3d技术

Threejs文字与css2d/css3d技术 学习ThreeJS的捷径学习之前先搞清楚自己想要什么样的效果贴图文字准备一张带文字的png贴图使用sprite来进行贴图实现2D始终面朝相机的文字使用planeGeometry来贴图实现3D文字使用planeGeometry来贴图实现伪3D文字动态贴图文字html2Canvas 文字几何…

Java8关于Function接口

Java学习-Function接口 1 函数式接口简介和学习地址2 两种常见的函数式接口2.1 Runnable&#xff1a;执行接口&#xff0c;不接收参数&#xff0c;也无返回结果。2.2 Consumer&#xff1a;作为消费接口&#xff0c;接收一个参数&#xff0c;无返回结果。 3 初识3.1 定义Functio…

Android详细介绍POI进行Word操作(小白可进)

poi-tl是一个基于Apache POI的Word模板引擎&#xff0c;也是一个免费开源的Java类库&#xff0c;你可以非常方便的加入到你的项目中&#xff0c;并且拥有着让人喜悦的特性。 一、使用poi前准备 1.导入依赖&#xff1a; 亲手测过下面Android导入POI依赖的方法可用 放入这个 …