机器学习(五) -- 监督学习(2) -- k近邻

系列文章目录及链接

目录

前言

一、K近邻通俗理解及定义

二、原理理解及公式

1、距离度量

四、接口实现

1、鸢尾花数据集介绍

2、API

3、流程

3.1、获取数据

3.2、数据预处理

3.3、特征工程

3.4、knn模型训练

3.5、模型评估

3.6、结果预测

4、超参数搜索-网格搜索

5、优缺点


前言

tips:标题前有“***”的内容为补充内容,是给好奇心重的宝宝看的,可自行跳过。文章内容被“文章内容”删除线标记的,也可以自行跳过。“!!!”一般需要特别注意或者容易出错的地方。

本系列文章是作者边学习边总结的,内容有不对的地方还请多多指正,同时本系列文章会不断完善,每篇文章不定时会有修改。

文中为方便理解,会将接口在用到的时候才导入,实际中应在文件开始统一导入。


一、K近邻通俗理解及定义

1、什么叫k近邻(What)

K-近邻算法(K Nearest Neighbor)又叫KNN算法。指如果一个样本在特征空间中的k个最相似(特征空间中最近邻)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

(如图,我离小羽最近,所以我也属于武侯区)

2、k近邻的目的(Why)

核心思想:根据你的“邻居”的类别来推断出你的类别

(通过找到找到样本中离我们最近的K个样本,类别中样本数最多的类别就是我的类别)

3、怎么做(How)

K-近邻算法流程:

  1. 计算已知类别数据集中的点(已知类别点)与当前点(待分类点)之间的距离
  2. 按距离递增次序排序
  3. 选取与当前点距离最小的k个点
  4. 统计前k个点所在的类别出现的频率
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类

这里就有两个问题:K值怎么取?怎么取确定离我最近呢(怎么确定距离)?

一般手动调节K值大小:
        k 值取得过小,容易受到异常点的影响
        k 值取得过大,样本不均衡的影响

距离计算:
        欧氏距离(距离平方值)
        曼哈顿距离 (距离绝对值)
        切比雪夫距离(维度的最大值)
        明可夫斯基距离

二、原理理解及公式

1、距离度量

距离度量用于计算给定问题空间中两个对象之间的差异,即数据集中的特征。然后可以使用该距离来确定特征之间的相似性, 距离越小特征越相似;

1.1、欧氏距离(Euclidean Distance)

空间中两点间的直线距离。(一般使用方法)

欧式距离也称为l2范数,公式:

1.2、曼哈顿距离(Manhattan Distance)

也称为城市街区距离,因为两个点之间的距离是根据一个点只能以直角移动计算的。这种距离度量通常用于离散和二元属性,这样可以获得真实的路径;

欧式距离也称为l1范数,公式: 

1.3、切比雪夫距离(Chebyshev Distance)

切比雪夫距离也称为棋盘距离,二个点之间的距离是其各坐标数值差绝对值的最大值。

欧式距离也称为l-无穷范数,公式:

1.4、闵氏距离(Minkowski)(闵可夫斯基距离)

当p = 1 时,即为曼哈顿距离;
当p = 2 时,即为欧氏距离;注:只有欧式距离具有平移不变性;
当p = ∞时,即为切比雪夫距离;

三、**算法实现

四、接口实现

1、鸢尾花数据集介绍

1.1、API

# API
from sklearn.datasets import load_iris

 1.2、介绍

 鸢尾花数据集共收集了三类鸢尾花,即Setosa鸢尾花、Versicolour鸢尾花和Virginica鸢尾花,每一类鸢尾花收集了50条样本记录,共计150条。

 数据集包括4个属性,分别为花萼的长、花萼的宽、花瓣的长和花瓣的宽。单位是cm。

iris = load_iris()print("鸢尾花数据集的键",iris.keys())
# "数据--特征值","目标值","","目标名","描述","特征名","文件名","数据模型名"print(iris.data.shape)print("鸢尾花数据集特征值名字是:",iris.feature_names)
# sepal length 花萼长度、sepal width 花萼宽度、petal length 花瓣长度、petal width 花瓣宽度(单位是cm)print("鸢尾花数据集目标值名字是:",iris.target_names)
# Setosa(山鸢尾)、Versicolour(杂色鸢尾)、Virginica(维吉尼亚鸢尾)

 其他属性:

print("鸢尾花数据集的返回值:\n", iris)
# 返回值类型是bunch--是一个字典类型# 既可以使用[]输出也可以使用.输出
print("鸢尾花数据集特征值是:",iris["data"])
# print("数据集特征值是:",iris.data)
print("鸢尾花数据集目标值是:",iris.target)print("鸢尾花数据集的描述是:",iris.DESCR)

1.3、查看数据分布(两个特征)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.random.seed(1734)#将生成的交互式图嵌入notebook中
%matplotlib notebook #将生成的静态图嵌入notebook中
%matplotlib inlineplt.rcParams['font.sans-serif'] = 'SimHei' # 设置字体为SimHei # 显示中文
plt.rcParams['axes.unicode_minus']=False # 修复负号问题from sklearn.datasets import load_irisiris = load_iris()# 取150个样本,取中间两列特征,花萼宽度和花瓣长度
x=iris.data[0:150,1:3]
y=iris.target[0:150]#分别取前两类样本,0和1
samples_0 = x[y==0, :]#把y=0,即Iris-setosa的样本取出来
samples_1 = x[y==1, :]#把y=1,即Iris-versicolo的样本取出来
samples_2 = x[y==2, :]#把y=2,即Iris-virginica的样本取出来# 可视化
plt.figure()
plt.scatter(samples_0[:,0],samples_0[:,1],marker='o',color='r')
plt.scatter(samples_1[:,0],samples_1[:,1],marker='x',color='y')
plt.scatter(samples_2[:,0],samples_2[:,1],marker='*',color='b')
plt.xlabel('花萼宽度')
plt.ylabel('花瓣长度')
plt.show()

2、API

sklearn.neighbors.KNbeighborsClassifer导入:
from sklearn.neighbors import KNeighborsClassifier语法:
KNbeighborsClassifer(n_neighbors=5,algorithm='auto')n_neighbors:  默认为5,就是K近邻中的K值 Algorithm:{'auto','ball_tree','kd_tree','brute'}auto:可以理解为算法自己决定合适的搜索算法ball_tree:克服kd树高维失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。kd_tree:构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。brute:线性扫描,当训练集很大时,计算非常耗时

3、流程

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifier

3.1、获取数据

# 载入数据
iris = load_iris()
# print(iris)

3.2、数据预处理

# 划分数据集
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=1473) 

3.3、特征工程

进行KNN时,一般要进行无量纲化。

3.4、knn模型训练

# 实例化一个预估器
knn = KNeighborsClassifier(n_neighbors=3)# 模型训练
knn.fit(x_train, y_train)

 

3.5、模型评估

# 模型评估# 用模型计算测试值,得到预测值
y_pred = knn.predict(x_test)# 准确率
print("预测的准确率",knn.score(x_test,y_test))# 一样的哦
from sklearn.metrics import accuracy_score
print("预测的准确率",accuracy_score(y_test,y_pred))

一般用准确率就行,

# 将预测值与真实值比较
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

用分类报告【详情请看机器学习(四) -- 模型评估(2)-分类报告】

精确率(precision)、召回率(recall)、F1 值(F1-score)和样本数目(support)

3.6、结果预测

经过模型评估后通过的模型可以代入真实值进行预测。

4、超参数搜索-网格搜索

网格搜索法(Grid Search)是一种在机器学习中用于确定最佳模型超参数的方法之一。

超参数是指在训练模型之前需要手动设置的参数。

4.1、API:

sklearn.model_selection.GridSearchCV导入:
from sklearn.model_selection import GridSearchCV语法:
gs=GridSearchCV(estimator,param_grid,…,cv=’3’)estimator:要优化的模型对象。param_grid:指定参数的候选值范围,可以是一个字典或列表。cv:交叉验证参数,默认None,使用三折交叉验证。gs.fit():运行网格搜索gs.best_estimator_:返回在交叉验证中选择的最佳估计器。
gs.best_params_:返回在交叉验证中选择的最佳参数组合。
gs.best_score_:返回在交叉验证中选择的最佳评分。
gs.cv_results_:返回一个字典,具体用法模型不同参数下交叉验证的结果。
gs.scorer_:返回用于评分的评估器。
gs.n_splits_:返回交叉验证折叠数。

4.2、实践:

# 构造参数列表
param = {"n_neighbors": [3, 5, 10, 12, 15]}# 进行网格搜索,cv=3是3折交叉验证
gs = GridSearchCV(knn, param_grid=param, cv=3)gs.fit(x_train, y_train)  #你给它的x_train,它又分为训练集,验证集# 预测准确率,为了给大家看看
print("在测试集上准确率:", gs.score(x_test, y_test))print("在交叉验证当中最好的结果:", gs.best_score_)print("选择最好的模型是:", gs.best_estimator_)print("最好的参数是 ", gs.best_params_)# print("每个超参数每次交叉验证的结果:", gs.cv_results_)

 有关交叉验证移步【机器学习(四) -- 模型评估(1)】

5、优缺点

5.1、优点:

  • 简单,易于理解,易于实现
  • 分类回归都可以用

5.2、缺点:

  • 必须指定K值,K值选择不当则分类精度不能保证
  • 需要算每个测试点与训练集的距离,当训练集较大时,计算量相当大,时间复杂度高,特别是特征数量比较大的时候。需要大量的内存,空间复杂度高。

  • 懒惰算法,对测试样本分类时的计算量大,内存开销大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/302881.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT drawPixmap和drawImage处理图片模糊问题

drawPixmap和drawImage显示图片时,如果图片存在缩放时,会出现模糊现象,例如将一个100x100 的图片显示到30x30的区域,这个时候就会出现模糊。如下: 实际图片: 这个问题就是大图显示成小图造成的像素失真。 当…

【stm32】I2C通信协议

【stm32】I2C通信协议 概念及原理 如果我们想要读写寄存器来控制硬件电路,就至少需要定义两个字节数据 一个字节是我们要读写哪个寄存器,也就是指定寄存器的地址 另一个字节就是这个地址下存储寄存器的内容 写入内容就是控制电路,读出内容就…

利用IP地址判断羊毛用户:IP数据云提供IP风险画像

在当今数字化社会,互联网已经成为人们日常生活和商业活动中不可或缺的一部分。然而,随着网络的普及,网络欺诈行为也日益猖獗,其中包括了羊毛党这一群体。羊毛党指的是利用各种手段获取利益、奖励或者优惠而频繁刷取优惠券、注册账…

FME学习之旅---day21

我们付出一些成本,时间的或者其他,最终总能收获一些什么。 教程:AutoCAD 变换 相关的文章 为您的 DWG 赋予一些样式:使用 DWGStyler、模板文件、块等 FME数据检查器在显示行的方式上受到限制。它只能显示线条颜色,而…

Java NIO Selector选择器源码分析

文章目录 前言Selector类结构Selector抽象类AbstractSelectorSelectorImplWindowsSelectorImpl三种SelectionKey集合 前言 Java NIO(New I/O)的Selector选择器是一个用于多路复用(Multiplexing)的I/O操作的关键组件。它允许一个单…

弹幕功能1

今天看pure-admin的时候发现有个弹幕功能 GitHub - hellodigua/vue-danmaku: 基于 Vue 的弹幕交互组件 | A danmaku component for Vue

使用VPN时,Java程序无法访问远程网络的解决办法

应用场景: 电脑连接VPN之后,Java程序无法连接远程服务,比如第三方接口、远程数据库连接、远程微服务等。我个人遇到的情况有连接海康威视SDK,influxdb以及一些微服务。 解决办法: 启动Java时加入参数:-D…

Webots常用的执行器(Python版)

文章目录 1. RotationalMotor2. LinearMotor3. Brake4. Propeller5. Pen6. LED 1. RotationalMotor # -*- coding: utf-8 -*- """motor_controller controller."""from controller import Robot# 实例化机器人 robot Robot()# 获取基本仿真步长…

LeetCode 热题 100 题解(二):双指针部分(1)

题目一:移动零(No. 283) 题目链接:https://leetcode.cn/problems/move-zeroes/description/?envTypestudy-plan-v2&envIdtop-100-liked 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同…

惠海 H4029 同步整流降压芯片IC 支持24V/36V转12V/5V/3.3V5A方案 大电流温度低

同步整流降压芯片IC是一种高效能的电源管理方案,用于将较高的输入电压(如24V或36V)转换为较低的输出电压(如12V、5V或3.3V),同时提供高达5A的大电流输出。这种芯片采用同步整流技术,相比传统的线…

自动驾驶基础技术-无迹卡尔曼滤波UKF

自动驾驶基础技术-无迹卡尔曼滤波UKF Unscented Kalman Filter是解决非线性卡尔曼滤波的另一种思路,它利用Unscented Transform来解决概率分布非线性变换的问题。UnScented Kalman Filter不需要像Extended Kalman Filter一样计算Jacobin矩阵,在计算量大…

Vue通过自定义指令实现元素平滑上升的动画效果。没一句废话

1、演示 2、介绍 这个指令不是原生自带的&#xff0c;需要手动去书写&#xff0c;但是这辈子只需要编写这一次就好了&#xff0c;后边可以反复利用。 用到的API&#xff1a;IntersectionObserver 这里有详细介绍 3、Vue文件代码 <template><div class"container&…

软件测试面试入职了,背完这写轻松上岸

全网首发-涵盖16个技术栈 第一部分&#xff0c;测试理论&#xff08;测试基础需求分析测试模型测试计划测试策略测试案例等等&#xff09; 第二部分&#xff0c;Linux&#xff08; Linux基础Linux练习题&#xff09; 第三部分&#xff0c;MySQL&#xff08;基础知识查询练习…

AI技术创业有哪些机会?

引言 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正不断地推动着各行各业的创新和变革。AI作为一项具有巨大潜力的技术&#xff0c;正在为创业者带来许多新的机会。本文将探讨AI技术创业领域中的机会&#xff0c;并通过具体的例子来说明它们。 1. 智…

学习操作系统之多道批处理系统

1964年IBM生产了第一台小规模集成电路计算机IBM System/360&#xff08;第三代计算机&#xff09;&#xff0c;并为该计算机开发了OS/360操作系统&#xff0c;是第一个多道批处理系统。 多道批处理的运行机制&#xff1a; 多道批处理系统同样要求事先将多道作业存放到外存上并…

lora微调过程

import os import pickle from transformers import AutoModelForCausalLM from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskTypedevice "cuda:0"#1.创建lora微调基本的配置 peft_config LoraConfig(task_typeTask…

Fecify站点斗篷cloak

斗篷cloak站点斗篷模式功能发布&#xff01;全新的应用场景&#xff0c;该模式是针对推广不用GMC&#xff0c;而是通过facebook&#xff0c;或者其他的一些平台/工具推广&#xff0c;这些推广方式的特点是&#xff1a;不需要商品的图片&#xff0c;或者说不会排查商品图片的侵权…

基于数据沙箱与LLM用例自愈的UI自动化测试平台

UI自动化测试能够在一定程度上确保产品质量&#xff0c;尤其在降本提效的大背景下&#xff0c;其重要性愈发凸显。理想情况下&#xff0c;UI自动化测试不仅能够能帮我们规避不少线上问题&#xff0c;又能加快产品上线速度。然而现实却往往相去甚远&#xff0c;在多数情况下&…

【React】React hooks 清除定时器并验证效果

React hooks 清除定时器并验证效果 目录结构如下useTime hookClock.tsx使用useTime hookApp.tsx显示Clock组件显示时间&#xff08;开启定时器&#xff09;隐藏时间&#xff08;清除定时器&#xff09; 总结参考 目录结构如下 useTime hook // src/hooks/common.ts import { u…

【随笔】Git 高级篇 -- 分离 HEAD(十一)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…