2024年mathorcup(妈妈杯)数学建模C题思路-物流网络分拣中心货量预测及人员排班

# 1 赛题
C 题 物流网络分拣中心货量预测及人员排班
电商物流网络在订单履约中由多个环节组成,图 ’ 是一个简化的物流 网络示意图。其中,分拣中心作为网络的中间环节,需要将包裹按照不同 流向进行分拣并发往下一个场地,最终使包裹到达消费者手中。分拣中心管理效率的提升, 对整体网络的履约效率和运作成本起着十分重要的作用。
在这里插入图片描述
分拣中心的货量预测是电商物流网络重要的研究问题,对分拣中心货 量的精准预测是后续管理及决策的基础,如果管理者可以提前预知之后一 段时间各个分拣中心需要操作的货量,便可以提前对资源进行安排。在此 场景下的货量预测目标一般有两个: 一是根据历史货量、物流网络配置等 信息,预测每个分拣中心每天的货量;二是根据历史货量小时数据,预测每个分拣中心每小时的货量。

分拣中心的货量预测与网络的运输线路有关,通过分析各线路的运输货量,可以得出各分拣中心之间的网络连接关系。当线路关系调整时,可以参考线路的调整信息,得到各分拣中心货量更为准确的预测。

基于分拣中心货量预测的人员排班是接下来要解决的重要问题,分拣 中心的人员包含正式工和临时工两种:正式工是场地长期雇佣的人员,工 作效率较高; 临时工是根据货量情况临时招募的人员, 每天可以任意增减, 但工作效率相对较低、雇佣成本较高。根据货量预测结果合理安排人员, 旨在完成工作的情况下尽可能降低人员成本。针对当前物流网络,其人员
安排班次及小时人效指标情况如下:

  1. 对于所有分拣中心,每天分为 6 个班次,分别为: 00:00-08:00, 05:00- 13:00 ,08:00- 16:00, 12:00-20:00 ,14:00-22:00 ,16:00-24:00,每个人员(正式工或临时工)每天只能出勤一个班次;
  2. 小时人效指标为每人每小时完成分拣的包裹量(包裹量即货量),正 式工的最高小时人效为 25 包裹/小时,临时工的最高小时人效为 20包裹/小时。
    该物流网络包括 57 个分拣中心, 每个分拣中心过去 4 个月的每天货量 如附件 1 所示, 过去 30 天的每小时货量如附件 2 所示。基于以上数据, 请完成以下问题:

问题 1:建立货量预测模型,对 57 个分拣中心未来 30 天每天及每小时的货量进行预测,将预测结果写入结果表 1 和表 2 中。
问题 2:过去 90 天各分拣中心之间的各运输线路平均货量如附件 3 所 示。若未来 30 天分拣中心之间的运输线路发生了变化,具体如附件 4 所示。 根据附件 1-4,请对 57 个分拣中心未来 30 天每天及每小时的货量进行预测,并将预测结果写入结果表 3 和表 4 中。
问题 3:假设每个分拣中心有 60 名正式工, 在人员安排时将优先使用 正式工, 若需额外人员将使用临时工。请基于问题 2 的预测结果建立模型, 给出未来 30 天每个分拣中心每个班次的出勤人数, 并写入结果表 5 中。要 求在每天的货量处理完成的基础上,安排的人天数(例如 30 天每天出勤 200 名员工, 则总人天数为 6000)尽可能少,且每天的实际小时人效尽量
均衡。
问题 4:研究特定分拣中心的排班问题, 这里不妨以 SC60 为例,假设 分拣中心 SC60 当前有 200 名正式工, 请基于问题 2 的预测结果建立模型, 确定未来 30 天每名正式工及临时工的班次出勤计划,即给出未来 30 天每 天六个班次中,每名正式工将在哪些班次出勤,每个班次需要雇佣多少临 时工,并写入结果表 6 中。每名正式工的出勤率(出勤的天数除以总天数 30)不能高于 85% ,且连续出勤天数不能超过 7 天。要求在每天货量处理 完成的基础上,安排的人天数尽可能少,每天的实际小时人效尽量均衡,且正式工出勤率尽量均衡。
注:上面四个问题中, 除了正常完成论文外,每个问题的输出结果表
请一起压缩为“结果.zip ”压缩包格式,并单独上传至竞赛平台。

2 选题分析

A题属于目标优化问题,还结合了动态规划问题,别看题目描述的复杂,只要构建好目标函数就能轻松解决

B题这种类型的题目这几年出的还不少呀,就是机器学习或深度学习的图像目标检测

C题是一个典型的运筹学问题,涉及到预测模型的建立和优化排班策略的制定。解决这个问题需要综合运用统计学、机器学习、优化算法等多学科知识。

D题该问题是一个典型的优化问题,需要综合考虑多个因素,如设备性能、矿山条件、成本和风险等

本次建模题目难度(由高到低) B>A>D>C

!!!A君会先出C题思路!!!

3 解题思路

3.1 简要分析

具体问题描述如下:

货量预测:需要根据历史数据预测未来不同时间段的货量。文档中提供了一系列的时间段,每个时间段对应一个货量值。这些时间段从00:00-08:00开始,以4小时为一个单位,直到24:00结束。预测的目的是为了更好地安排人员和资源,以应对不同时间段的货量变化。

人员排班:基于货量预测结果,需要制定合理的人员排班计划。文档中提到了不同的排班时间段,例如05:00-13:00,12:00-20:00等,以及每个时间段所需的人员数量。排班计划需要考虑到货量高峰和低谷,以及人员的工作时长和休息时间等因素。

数据分析:首先需要对提供的历史货量数据进行分析,找出货量变化的规律和趋势。这可能涉及到时间序列分析、相关性分析等统计方法。

预测模型构建:根据分析结果,构建一个能够预测未来货量的数学模型。这个模型可能需要考虑到季节性因素、特殊事件、节假日等对货量的影响。

优化排班:在预测模型的基础上,制定人员排班计划。这可以通过运筹学中的排班优化模型来实现,如线性规划、整数规划等,以最小化成本或最大化效率。

验证与调整:最后,需要对预测模型和排班计划进行验证,确保它们在实际操作中的有效性和可行性。根据实际情况的反馈,对模型和计划进行必要的调整和优化。

这个问题是一个典型的运筹学问题,需要综合运用数学建模、统计分析和优化技术来解决。解决这个问题不仅可以提高物流中心的运营效率,降低成本,还可以提升员工的工作满意度和服务质量。

3.2 思路更新

第一问思路已出,第一问本质上就是一个Arima预测即可,详细思路放在文档中

在这里插入图片描述

第二问思路更新

C题第二问思路更新,大家注意第二问一定要构建完整的拓扑网络,网上有资料说是构建最短路即可,完全是错的,快递物流系统往往并不能理想的走最短路,要考虑的是负载均衡(保持原负载不变)

在这里插入图片描述

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

4 最新思路更新

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306796.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外观模式:简化复杂系统的统一接口

在面向对象的软件开发中,外观模式是一种常用的结构型设计模式,旨在为复杂的系统提供一个简化的接口。通过创建一个统一的高级接口,这个模式帮助客户端通过一个简单的方式与复杂的子系统交互。本文将详细介绍外观模式的定义、实现、应用场景以…

云原生(八)、Kubernetes基础(一)

K8S 基础 # 获取登录令牌 kubectl create token admin --namespace kubernetes-dashboard1、 NameSpace Kubernetes 启动时会创建四个初始名字空间 default:Kubernetes 包含这个名字空间,以便于你无需创建新的名字空间即可开始使用新集群。 kube-node-lease: 该…

PostgreSQL15 + PostGis + QGIS安装教程

目录 下载1、PostgreSQL安装1.1、环境变量配置 2、PostGIS安装2.1、安装插件 3、QGIS下载3.1、安装3.2、测试 下载 PostgreSQL15安装:下载地址 PostGIS安装:下载地址(倒数第二个) 1、PostgreSQL安装 下载安装包之后一直点下一步…

Python 全栈系列239 使用消息队列完成分布式任务

说明 在Python - 深度学习系列32 - glm2接口部署实践提到,通过部署本地化大模型来完成特定的任务。 由于大模型的部署依赖显卡,且常规量级的任务需要大量的worker支持,从成本考虑,租用算力机是比较经济的。由于任务是属于超高计…

AR地图导览小程序是怎么开发出来的?

在移动互联网时代,AR技术的发展为地图导览提供了全新的可能性。AR地图导览小程序结合了虚拟现实技术和地图导航功能,为用户提供了更加沉浸式、直观的导览体验。本文将从专业性和思考深度两个方面,探讨AR地图导览小程序的开发方案。 编辑搜图 …

【大语言模型】基础:如何处理文章,向量化与BoW

词袋模型(BoW)是自然语言处理(NLP)和机器学习中一种简单而广泛使用的文本表示方法。它将文本文档转换为数值特征向量,使得可以对文本数据执行数学和统计操作。词袋模型将文本视为无序的单词集合(或“袋”&a…

给现有rabbitmq集群添加rabbitmq节点

现有的:10.2.59.216 rabbit-node1 10.2.59.217 rabbit-node2 新增 10.2.59.199 rabbit-node3 1、分别到官网下载erlang、rabbitmq安装包,我得版本跟现有集群保持一致。 erlang安装包:otp_src_22.0.tar.gz rabbitmq安装包&#xff1…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第三套

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第三套 (共9套,有答案和解析,答案非官方,未仔细校正,仅供参考) 部分题目分享,完整版获取(WX:didadidadidida313,加我备注&#x…

c++编程(3)——类和对象(1)、类

欢迎来到博主的专栏——c编程 博主ID:代码小豪 文章目录 类对象类的访问权限类的作用域 类 c最初对c语言的扩展就是增加了类的概念,使得c语言在原有的基础之上可以做到信息隐藏和封装。 那么我们先来讲讲“带类的c”与C语言相比有什么改进。 先讲讲类…

Golang | Leetcode Golang题解之第24题两两交换链表中的节点

题目: 题解: func swapPairs(head *ListNode) *ListNode {dummyHead : &ListNode{0, head}temp : dummyHeadfor temp.Next ! nil && temp.Next.Next ! nil {node1 : temp.Nextnode2 : temp.Next.Nexttemp.Next node2node1.Next node2.Nex…

论文阅读:Polyp-PVT: Polyp Segmentation with PyramidVision Transformers

这篇论文提出了一种名为Polyp-PVT的新型息肉分割框架,该框架采用金字塔视觉变换器(Pyramid Vision Transformer, PVT)作为编码器,以显式提取更强大的特征。本模型中使用到的关键技术有三个:渐进式特征融合、通道和空间…

【vue】watch 侦听器

watch&#xff1a;可监听值的变化&#xff0c;旧值和新值 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><titl…

【opencv】示例-imgcodecs_jpeg.cpp使用OpenCV库来创建和处理图像,并保存为不同JPEG采样因子的版本...

上层-原始图像 下层&#xff1a;编码解码后的lossy_img #include <opencv2/core.hpp> // 包含OpenCV核心功能的头文件 #include <opencv2/imgproc.hpp> // 包含OpenCV图像处理功能的头文件 #include <opencv2/imgcodecs.hpp> // 包含OpenCV图像编码解码功能…

平板设备IP地址设置指南

在数字化时代&#xff0c;平板电脑作为便携且功能强大的设备&#xff0c;广泛应用于日常生活和工作中。为了确保平板能够正常接入网络并与其他设备进行通信&#xff0c;正确设置IP地址是至关重要的。虎观小二将为您介绍如何设置平板的IP地址&#xff0c;帮助您轻松完成网络配置…

大创项目推荐 深度学习+opencv+python实现车道线检测 - 自动驾驶

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数&#xff1a;3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &am…

数字IC/FPGA——锁存器/触发器/寄存器

本文主要介绍以下几点&#xff1a; 什么是触发器和锁存器门电路和触发器的区别什么是电平钟控触发器电平钟控触发器触发器和锁存器的区别触发器的分类方式&#xff1a;逻辑功能、触发方式、电路结构、存储数据原理、构成触发器的基本器件寄存器利用移位寄存器实现串并转换或并…

WordPress LayerSlider插件SQL注入漏洞复现(CVE-2024-2879)

0x01 免责声明 请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;作者不为此承担任何责任。工具来自网络&#xff0c;安全性自测&#xff0c;如有侵权请联系删…

LiveNVR监控流媒体Onvif/RTSP功能-概览负载统计展示取流中、播放中、录像中点击柱状图快速定位相关会话

LiveNVR概览负载统计展示取流中、播放中、录像中点击柱状图快速定位相关会话 1、负载信息说明2、快速定位会话3、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、负载信息说明 实时展示取流中、播放中、录像中等使用数目 取流中&#xff1a;当前拉流到平台的实时通道数目播放中&am…

基于单片机的智能锁芯报警系统设计

摘 要:在传统的智能锁芯报警系统中,存在响应时间较长的问题,为此,提出一种基于单片机的智能锁芯报警系统。通过控制模块、智能锁芯设置模块、报警模块、中断模块、液晶模块等,建立系统总体框架,根据系统总体框架,通过单片机、电源适配器、智能锁芯、报警器、LED灯等…

浏览器工作原理与实践--HTTP/2:如何提升网络速度

上一篇文章我们聊了HTTP/1.1的发展史&#xff0c;虽然HTTP/1.1已经做了大量的优化&#xff0c;但是依然存在很多性能瓶颈&#xff0c;依然不能满足我们日益变化的新需求&#xff0c;所以就有了我们今天要聊的HTTP/2。 本文我们依然从需求的层面来谈&#xff0c;先分析HTTP/1.1存…