【Linux】基础IO----理解缓冲区

> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:理解缓冲区

> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!

> 专栏选自:Linux初阶

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

🌟前言

缓冲区大家其实不陌生,像我们使用的 VS2019 编译器这里就有缓冲区,那它到底在哪呢,比如我们打印时的窗口需要我们输入,这里就有缓冲区。其实在输入我们也好奇为什么编译器会等待我们输入,这里就不得不谈我们缓冲区的相关知识,那具体是什么呢?今天我们来解开这层面纱。

⭐主体

学习【Linux】基础IO----理解缓冲区咱们按照下面的图解:

🌙 认识缓冲区

💫 为什么有缓冲区

概念:

缓冲区 (buffer),它是内存空间的一部分。 也就是说,在内存空间中预留了一定的存储空间,这些存储空间用来缓冲输入或输出的数据,这部分预留的空间就叫做缓冲区,显然缓冲区是具有一定大小的。

理解:

数据如果直接从内存到磁盘,在内存中速度快,但是访问外设效率比较低,那太消耗时间了,属于外设IO,所以缓冲区的意义就是节省进程进行数据IO的时间!进程需要把数据拷贝到缓冲区里:我们并不需要拷贝,而是调用fwrite,与其理解fwrite是写入到文件的函数,倒不如理解fwrite是拷贝函数,将数据从进程拷贝到缓冲区或者外设当中。

图解:

数据可以直接拷贝到缓冲区,高速设备不用在等待低速设备,提高计算机的效率。

💫 缓冲区如何刷新

概念:

缓冲区的刷新策略:如果有一块数据,一次写入到外设(效率最高)vs如果有一块数据,多次少量写入到外设,需要多次IO。缓冲区一定结合具体的设备定制自己的刷新策略

方法:

  • 立即刷新——无缓冲 ,场景较少,比如调用printf直接fflush
  • 行刷新——行缓冲——显示器 ,数据的printf带上\n就会立马显示到显示器上。显示器为什么是行缓冲:显示器是外设,进程运行时在内存里的,把数据定期要刷新到外设,显示器设备比较特殊,是给用户来看的,从左到右,所以显示器为了保证刷新效率,并且用户体验良好,所以显示器采用行缓冲,满足用户的阅读体验并且在一定程度上效率不至于太低
  • 缓冲区满——全缓冲——磁盘文件,效率最高,只需要一次IO,比如文件读写的时候,直接写到磁盘文件

总结:

但是存在特殊情况:a.用户强制刷新 b,进程退出——一般到要进行缓冲区刷新,所以对于全缓冲,缓冲区满了采取刷新,减少IO次数,提高效率。

💫 缓冲区在哪里呢

缓冲区的位置究竟在哪里???

从上面的例子我们直接往显示器上打印结果为4条,往文件打印为7条,这跟缓冲区有关,同时这也说明了缓冲区一定不在内核中,为什么?如果在内核中write也应该打印两次,write是系统接口。我们之前谈论的所有缓冲区都指的是用户级语言层面提供的缓冲区。这个缓冲区,在stdout,stdin,stderr对应的类型---->FILE*,FILE是一个结构体,里面封装了fd,同时还包括了一个缓冲区!

理解FILE结构体缓冲区:

FILE结构体缓冲区,所以我们直接要强制刷新的时候fflush(文件指针),关闭文件fclose(文件指针),这是因为传进去的文件指针对应的缓冲区。

查看源码来解释FILE结构体:

  

分析:

总结:

  • 所以我们一般所说的缓冲区是语言级别的缓冲区,C语言提供的在FILE结构体里对应的缓冲区。
  • 重定向导致刷新策略发生了改变(由行缓冲变成了全缓冲)。同时发生了写时拷贝,父子进程各自刷新

🌙 引入缓冲器

概念分析:

高速设备与低速设备的不匹配(cpu运算是纳秒,内存是微秒,磁盘是毫秒甚至是秒相差1000倍),势必会让高速设备花时间等待低速设备,我们可以在这两者之间设立一个缓冲区。

缓冲区优点:

  • 可以解除两者的制约关系,数据可以直接送往缓冲区,高速设备不用再等待低速设备,提高了计算机的效率
  • 可以减少数据的读写次数,如果每次数据只传输一点数据,就需要传送很多次,这样会浪费很多时间,因为开始读写与终止读写所需要的时间很长,如果将数据送往缓冲区,待缓冲区满后再进行传送会大大减少读写次数,这样就可以节省很多时间。例如:我们想将数据写入到磁盘中,不是立马将数据写到磁盘中,而是先输入缓冲区中,当缓冲区满了以后,再将数据写入到磁盘中,这样就可以减少磁盘的读写次数,不然磁盘很容易坏掉

🌙 缓冲区答疑

💫 问题一:代码分析

问题抛出:

分析结果:

同样的一个程序,向显示器打印输出4行文本,向普通文件(磁盘上)打印的时候,变成了7行,说明上面测试,并不影响系统接口

  1. C的IO接口是打印了2次的
  2. 系统接口,只打印了一次

我们最后调用fork,上面的函数已经被执行完了,但不代表数据已经被刷新了。

💫 问题二:缓冲区是谁提供

曾经“我们所谈的缓冲区”,绝对不是由OS提供的,如果是OS同一提供,那么我们上面的代码,表现应该是一样的,而不是C的IO接口打印两次,所以是C标准库提供并且维护的用户级缓冲区

fputs把不是直接把数据直接放进操作系统,而是加载进C标准库的缓冲区中,加载完后自己可以直接返回;如果直接调用的是write接口,则是直接写给OS,不经过缓冲区

  • C语言提供的接口都是向显示器打印的,刷新策略都是行刷新,那么最后执行fork的时候 —— 一定是函数执行完了 && 数据已经被刷新了(因为都带\n),所以fork执行无意义
  • 如你对应的程序进行了重定向 ——> 要向磁盘文件打印 ——> 隐形的刷新策略变成了全缓冲!—— > \n便没有意义了 ——> 函数一定执行完了,数据还没有刷新!! 在当前进程对应的C标准库中的缓冲区中!!

🌙 设计用户缓冲区

代码如下:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <stdlib.h>#define NUM 1024struct MyFILE_{int fd;             //文件描述符char buffer[1024];  // 缓冲区int end;            //当前缓冲区的结尾
};typedef struct MyFILE_ MyFILE;//类型重命名MyFILE *fopen_(const char *pathname, const char *mode)
{assert(pathname);assert(mode);MyFILE *fp = NULL;//什么也没做,最后返回NULLif(strcmp(mode, "r") == 0){}else if(strcmp(mode, "r+") == 0){}else if(strcmp(mode, "w") == 0){int fd = open(pathname, O_WRONLY | O_TRUNC | O_CREAT, 0666);if(fd >= 0){fp = (MyFILE*)malloc(sizeof(MyFILE));memset(fp, 0, sizeof(MyFILE));fp->fd = fd;}}else if(strcmp(mode, "w+") == 0){}else if(strcmp(mode, "a") == 0){}else if(strcmp(mode, "a+") == 0){}else{//什么都不做}return fp;
}//是不是应该是C标准库中的实现!
void fputs_(const char *message, MyFILE *fp)
{assert(message);assert(fp);strcpy(fp->buffer+fp->end, message); //abcde\0fp->end += strlen(message);//for debugprintf("%s\n", fp->buffer);//暂时没有刷新, 刷新策略是谁来执行的呢?用户通过执行C标准库中的代码逻辑,来完成刷新动作//这里效率提高,体现在哪里呢??因为C提供了缓冲区,那么我们就通过策略,减少了IO的执行次数(不是数据量)if(fp->fd == 0){//标准输入}else if(fp->fd == 1){//标准输出if(fp->buffer[fp->end-1] =='\n' ){//fprintf(stderr, "fflush: %s", fp->buffer); //2write(fp->fd, fp->buffer, fp->end);fp->end = 0;}}else if(fp->fd == 2){//标准错误}else{//其他文件}
}void fflush_(MyFILE *fp)
{assert(fp);if(fp->end != 0){//暂且认为刷新了--其实是把数据写到了内核write(fp->fd, fp->buffer, fp->end);syncfs(fp->fd); //将数据写入到磁盘fp->end = 0;}
}void fclose_(MyFILE *fp)
{assert(fp);fflush_(fp);close(fp->fd);free(fp);
}int main(){close(1);                                                                                MyFILE *fp = fopen_("./log.txt", "w");if(fp == NULL){printf("open file error");return 1;}fputs_("one:hello world error", fp);fputs_("two:hello world error", fp);fputs_("three:hello world error", fp);fputs_("four:hello world error", fp);fclose(fp);}

🌟结束语 

       今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308483.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全(防火墙,IDS,IPS概述)

问题一:什么是防火墙,IDS,IPS? 防火墙是对IP:port的访问进行限制,对访问端口进行制定的策略去允许开放的访问,将不放开的端口进行拒绝访问,从而达到充当防DDOS的设备。主要是拒绝网络流量,阻断所有不希望出现的流程,禁止数据流量流通,达到安全防护的作用。如将一些恶…

基于SSM强国有我党建网站

摘要 国家的繁荣富强与每一个人都息息相关密不可分并且关系密切&#xff0c;无论是从事最底层的工作的城市清洁工、工地上的民工、街边自己售卖自制商品进行生活的小商小贩&#xff1b;还是有一定的经济地位可以在电视中&#xff0c;采访中&#xff0c;各类访谈节目以及广大影…

C/C++ BM23 二叉树的前序遍历

文章目录 前言题目解决方案一1.1 思路阐述1.2 源码 解决方案二2.1 思路阐述2.2 源码 总结 前言 自己在草稿纸上模拟这个遍历的过程比较简单&#xff0c;但是转移到代码上就突然会懵逼。这个在我之前学数据结构&#xff0c;做到这个实验的时候觉得很难理解。最近虽然已经入职了…

java学习之路-继承

文章目录 前言 目录 1.1继承的概念 1.2继承有什么好处&#xff0c;为何要继承 1.3继承的语句 1.4父类成员的访问 1.4.1 子类中访问父类的成员变量 1.4.2 子类中访问父类的成员方法 1.5 super关键字 2.子类构造方法 2.1如何创建构造方法 2.2创建构造方法 3.super和this 【相同点…

C/C++基础----常量和基本数据类型

HelloWorld #include <iostream>using namespace std;int main() {// 打印cout << "Hello,World!" << endl;return 0; }c/c文件和关系 c和c是包含关系&#xff0c;c相当于是c的plus版本c的编译器也可以编译c语言c文件.cpp结尾.h为头文件.c为c语言…

unity android 打包

现在使用的unity版本hub不支持导入support&#xff0c;只能自己下载对应的支持 找到对应的sdk&#xff0c;ndk

自己动手封装axios通用方法并上传至私有npm仓库:详细步骤与实现指南

文章目录 一、构建方法1、api/request.js2、api/requestHandler.js3、api/index.js 二、测试方法1、api/axios.js2、main.js3、app.vue4、vue.config.js5、index.html 三、打包1、配置package.json2、生成库包3、配置发布信息4、发布 四、使用1、安装2、使用 五、维护1、维护和…

探索GlusterFS:开源分布式文件系统

目录 引言 一、GlusterFS简介 &#xff08;一&#xff09;基本介绍 &#xff08;二&#xff09;GlusterFS特点 &#xff08;三&#xff09;GlusterFS术语 &#xff08;四&#xff09;GlusterFS工作流程 二、GlusterFs的卷类型 &#xff08;一&#xff09;卷类型 &…

通过一篇文章让你了解Linux的重要性

Linux 前言一、什么是Linux后台vs前台为何大多数公司选择使用Linux作为后台服务器 二、Linux的背景介绍UNIX发展的历史Linux发展历史开源官网发行版本DebianUbuntu红帽企业级LinuxCentOSFedoraKali Linux 三、国内企业后台和用户使用Linux现状IT服务器Linux系统应用领域嵌入式L…

linux下动态库的运用

这里写目录标题 将头文件放入系统路径将.so动态库放入系统路径复制库文件&#xff1a;更新库缓存&#xff1a;验证安装&#xff1a; 完成 将头文件放入系统路径 先将include内容放入/usr/local/include下&#xff0c;这里可以先在/usr/local/include创建一个mkdir hpdf 文件夹…

一种驱动器的功能安全架构介绍

下图提供了驱动器实现安全功能的架构 具有如下特点&#xff1a; 1.通用基于总线或者非总线的架构。可以实现ethercat的FSOE&#xff0c;profinet的profisafe&#xff0c;或者伺服本体安全DIO现实安全功能。 2.基于1oo2D架构&#xff0c;安全等级可以达到sil3。 3.高可用性。单…

Pixel-GS:用于3D高斯溅射的具有像素感知梯度的密度控制

Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting Pixel-GS&#xff1a;用于3D高斯溅射的具有像素感知梯度的密度控制 Zheng Zhang  Wenbo Hu†  Yixing Lao   老宜兴市郑张文博胡 † Tong He  Hengshuang Zhao† 赵同和恒双 †1122113311 …

【oracle数据库安装篇一】Linux5.6基于LVM安装oracle10gR2单机

说明 本篇文章主要介绍了Linux5.6基于LVM安装oracle10gR2单机的配置过程&#xff0c;比较详细&#xff0c;基本上每一个配置部分的步骤都提供了完整的脚本&#xff0c;安装部分都提供了简单的说明和截图&#xff0c;帮助你100%安装成功oracle数据库。 安装过程有不明白的地方…

抖音视频无水印采集拓客软件|视频批量下载提取工具

抖音视频无水印批量采集拓客软件助力高效营销&#xff01; 随着抖音平台的崛起&#xff0c;视频已成为各行各业进行营销的重要工具。但是&#xff0c;传统的视频下载方式往往效率低下&#xff0c;无法满足快速获取大量视频的需求。针对这一问题&#xff0c;我们开发了一款视频无…

【PDF.js】PDF文件预览

【PDF.js】PDF文件预览 一、PDF.js二、PDF.js 下载1、下载PDF.js2、在项目中引入3、屏蔽跨域错误 三、项目中使用四、说明五、实现效果 使用PDFJS实现pdf文件的预览&#xff0c;支持预览指定页、关键词搜索、缩略图、页面尺寸调整等等。 一、PDF.js 官方地址 文档地址 二、PD…

JVM、maven、Nexus

一、jvm简介 1.应用程序申请内存时出现的三种情况&#xff1a; ①OOM:内存溢出&#xff0c;是指应用系统中存在无法回收的内存或使用的内存过多&#xff0c;最终使得程序运行要用到的内存大于能提供的最大内存。此时程序就运行不了&#xff0c;系统会提示内存溢出&#xff0c…

react query 学习笔记

文章目录 react query 学习笔记查询客户端 QueryClient获取查询客户端 useQueryClient异步重新请求数据 queryClient.fetchQuery /使查询失效 queryClient.invalidateQueries 与 重新请求数据queryClient.refetchQueries 查询 QueriesuseQuery查询配置对象查询的键值 Query Key…

最前沿・量子退火建模方法(1) : subQUBO讲解和python实现

前言 量子退火机在小规模问题上的效果得到了有效验证&#xff0c;但是由于物理量子比特的大规模制备以及噪声的影响&#xff0c;还没有办法再大规模的场景下应用。 这时候就需要我们思考&#xff0c;如何通过软件的方法怎么样把大的问题分解成小的问题&#xff0c;以便通过现在…

模型 洛萨达比例

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。积极和消极的平衡&#xff0c;左右着你们的关系。 1 洛萨达比例的应用 1.1 企业团队管理之洛萨达比例的应用 一个软件开发公司的团队经理注意到团队的士气和生产力有所下降。此时洛萨达比例是在2.9:…

故障诊断 | Matlab实现基于小波包结合鹈鹕算法优化卷积神经网络DWT-POA-CNN实现电缆故障诊断算法

故障诊断 | Matlab实现基于小波包结合鹈鹕算法优化卷积神经网络DWT-POA-CNN实现电缆故障诊断算法 目录 故障诊断 | Matlab实现基于小波包结合鹈鹕算法优化卷积神经网络DWT-POA-CNN实现电缆故障诊断算法分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现基于小波…