SysTick滴答定时器 - 延时函数

SysTick定时器

  • Systick定时器,是一个简单的定时器,对于CM3,CM4内核芯片,都有Systick定时器。
  • Systick定时器常用来做延时,或者实时系统的心跳时钟。这样可以节省MCU资源,不用浪费一个定时器。比如UCOS中,分时复用,需要一个最小的时间戳,一般在STM32+UCOS系统中,都采用Systick做UCOS心跳时钟。
  • Systick定时器就是系统滴答定时器,一个24 位的倒计数定时器,计到0 时,将从RELOAD 寄存器中自动重装载定时初值。只要不把它在- - SysTick 控制及状态寄存器中的使能位清除,就永不停息,即使在睡眠模式下也能工作。
  • SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。
  • Systick中断的优先级也可以设置。

SysTick相关寄存器

CTRL						SysTick 控制和状态寄存器
LOAD SysTick				自动重装载除值寄存器
VAL							SysTick 当前值寄存器
CALIB						SysTick 校准值寄存器

在Cortex M3权威指南中有详细的讲解:
在这里插入图片描述
对于STM32,外部时钟源是 HCLK(AHB总线时钟)的1/8 内核时钟是 HCLK时钟 配置函数:SysTick_CLKSourceConfig();

固件库中的Systick相关函数:

SysTick_CLKSourceConfig()		//Systick时钟源选择  misc.c文件中 
SysTick_Config(uint32_t ticks)	 //初始化systick,时钟为HCLK,并开启中断 //core_cm3.h/core_cm4.h文件中
/*misc.h*/
#define SysTick_CLKSource_HCLK_Div8    ((uint32_t)0xFFFFFFFB) //如果选择这个值,SysTick = HCLK/8
#define SysTick_CLKSource_HCLK         ((uint32_t)0x00000004) // SysTick = HCLK/*misc.c*//*函数入口参数:1 ----- 外部时钟源(STCLK)0 ----- 内核时钟(FCLK)
*/
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
{/* Check the parameters */assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));if (SysTick_CLKSource == SysTick_CLKSource_HCLK){SysTick->CTRL |= SysTick_CLKSource_HCLK;}else{SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;}
}
/*ticks --- 两个SysTick中断之间有多少个SysTick周期例如:ticks = 1000 那么两个中断之间就是有1000个周期
*/#define SysTick_LOAD_RELOAD_Msk            (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos)        /*!< SysTick LOAD: RELOAD  Mask   ==2^24-1*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk)  return (1);      /* Reload value impossible  最大不能超过2^24-1*/SysTick->LOAD  = ticks - 1;                                  /* set reload register */NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);  /* set Priority for Systick Interrupt */SysTick->VAL   = 0;                                          /* Load the SysTick Counter Value */SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |SysTick_CTRL_TICKINT_Msk   |SysTick_CTRL_ENABLE_Msk;                    /* Enable SysTick IRQ and SysTick Timer */return (0);                                                  /* Function successful */
}

Systick中断服务函数:(举例)

void SysTick_Handler(void);
例子:利用中断的方式实现delay延时函数,下面是代码:
static __IO uint32_t TimingDelay; //全局变量void Delay(__IO uint32_t nTime){ TimingDelay = nTime;while(TimingDelay != 0);
}/*每等待一ms SysTick都会产生一个中断 这个函数就是处理中断的函数
*/
void SysTick_Handler(void) {if (TimingDelay != 0x00) { 
​    TimingDelay--;}
}int main(void){/*M4芯片中的HCLK使用频率为168MHz中断时间间隔1ms 》》》 SystemCoreClock / 1000 == 168000000 / 1000 = 168000*/if (SysTick_Config(SystemCoreClock / 1000)) //systick时钟为HCLK,中断时间间隔1ms{while (1);}while(1){ Delay(200);//200ms}
}

Delay延时函数讲解:

delay_init()

//初始化延迟函数
//SYSTICK的时钟固定为AHB时钟的1/8
//SYSCLK:系统时钟频率
void delay_init(u8 SYSCLK)
{SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); fac_us=SYSCLK/8000000;				/* 为系统时钟的1/8;我们M4芯片的时钟是168MHz,那么fac_us = 168MHz / 8000000 = 21 实际上也就是在计算1us SysTick的VAL减的数目   */fac_ms=(u16)fac_us*1000;			/*	代表每个ms需要的systick时钟数,即每毫秒SysTick的VAL减的数目 */
}		

delay_ms()

//延时nms
//注意nms的范围
//SysTick->LOAD为24位寄存器,所以,最大延时为:
//nms<=0xffffff*8*1000/SYSCLK
//SYSCLK单位为Hz,nms单位为ms
//对168M条件下,nms<=798ms 
void delay_xms(u16 nms)
{	 		  	  u32 temp;		   SysTick->LOAD=(u32)nms*fac_ms;			//时间加载(SysTick->LOAD为24bit)SysTick->VAL =0x00;           			//清空计数器 因为清零了以后下次使能之后就会直接加载LOAD寄存器当中的初值SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ;          //开始倒数 do{temp=SysTick->CTRL;}while((temp&0x01)&&!(temp&(1<<16)));	//等待时间到达   SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk;       //关闭计数器SysTick->VAL =0X00;     		  		//清空计数器	  	    
} 

delay_us()

//延时nus
//nus为要延时的us数.	
//注意:nus的值,不要大于798915us(最大值即2^24/fac_us@fac_us=21)
void delay_us(u32 nus)
{		u32 temp;	    	 SysTick->LOAD=nus*fac_us; 				//时间加载	  		 SysTick->VAL=0x00;        				//清空计数器SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 	 do{temp=SysTick->CTRL;}while((temp&0x01)&&!(temp&(1<<16)));	//等待时间到达   SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器SysTick->VAL =0X00;       				//清空计数器 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310382.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows10为Git Bash添加文件传输命令rsync(详细图文配置)

文章目录 1. 安装git bash2. 下载所需要的4个包3. 下载解压包的软件4. 复制每个包下面的usr到git安装目录下4.1 所遇问题4.2 解决 5. 安装完成6. 需要注意 Windows上要使用 rsync命令上传或下载文件&#xff0c;需要使用git bash&#xff0c;git bash没有rsync&#xff0c;需要…

MAC(M1芯片)编译Java项目慢且发热严重问题解决方案

目录 一、背景二、排查三、解决四、效果以及结果展示五、总结 一、背景 使用idea编译项目等操作&#xff0c;经常性发热严重&#xff0c;并且时间慢。直到昨天编译一个项目用时30分钟&#xff0c;电脑温度很高&#xff0c;并且有烧灼的味道&#xff0c;于是有了此篇文章。 二、…

Python的国际化和本地化【第162篇—国际化和本地化】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 随着全球化的发展&#xff0c;多语言支持在软件开发中变得越来越重要。Python作为一种流行的…

VRRP——虚拟路由冗余协议

什么是VRRP 虚拟路由冗余协议VRRP&#xff08;Virtual Router Redundancy Protocol&#xff09;是一种用于提高网络可靠性的容错协议。 通过VRRP&#xff0c;可以在主机的下一跳设备出现故障时&#xff0c;及时将业务切换到备份设备&#xff0c;从而保障网络通信的连续性和可…

【vue】用vite创建vue项目

前置要求 要有Node.js 1. 用vite创建vue项目 在cmd中&#xff0c;进入一个文件夹 在文件资源管理器上面的文件目录中&#xff0c;输入cmd&#xff0c;回车在cmd中通过cd命令进入对应文件夹 创建项目 npm create vitelatest # 创建项目创建项目过程中的一些选项 Ok to pro…

06-vscode+espidf开发调试方法(内置JTAG调试)

使用VS Code和ESP-IDF进行ESP32开发和调试 在我们搭建 IDF 框架后&#xff0c;OpenOCD 已经自动下载好了&#xff0c; 我们通过 JTAG 接口连接使用 OpenOCD 进行调试。而ESP32芯片中内置 了JTAG 电路&#xff0c;无需额外芯片即可调试&#xff0c;更加方便&#xff0c;所以这里…

MySQL表结构的操作

文章目录 1. 创建表2. 查看表3. 修改表4. 删除表 1. 创建表 create table table_name (field1 datatype,field2 datatype,field3 datatype )character set 字符集 collate 校验集 engine 存储引擎;field&#xff1a;列名datatype&#xff1a;列的类型character set&#xff1a…

使用深度学习集成模型进行乳腺癌组织病理学图像分类

基于预训练的VGG16和VGG19架构训练了四种不同的模型&#xff08;即完全训练的 VGG16、微调的 VGG16、完全训练的 VGG19 和微调的 VGG19 模型&#xff09;。最初&#xff0c;我们对所有单独的模型进行了5倍交叉验证操作。然后&#xff0c;我们采用集成策略&#xff0c;取预测概率…

【华为OD机试】围棋的气【C卷|100分】

题目描述 围棋棋盘由纵横各19条线垂直相交组成,棋盘上一共19 x 19 = 361 个交点, 对弈双方一方执白棋,一方执黑棋,落子时只能将棋子置于交点上。 “气”是围棋中很重要的一个概念,某个棋子有几口气,是指其上下左右方向四个相邻的交叉点中, 有几个交叉点没有棋子,由此可…

【EM算法】算法及注解

EM算法又称期望极大算法&#xff0c;是一种迭代算法&#xff0c;每次迭代由两步组成&#xff1a;E步&#xff0c;求期望&#xff08;expectation&#xff09;&#xff1b;M步&#xff0c;求极大&#xff08;maximization&#xff09;。 算法背景 如果概率模型的变量都是观测变…

【报错】TypeError: Cannot read property ‘meta‘ of undefined

&#x1f608;解决思路 首先这里很明显我们能看到是缺少该参数&#xff1a;meta。 但是经过查找后发现和该参数无关。 &#x1f608;解决方法 后来我上网搜了下&#xff0c;网上的回答大部分偏向于是package.json这个文件中的tabBar.list数组对象只有一条的问题。 网上的大…

【Linux】引导与服务

一、系统引导过程 系统引导过程&#xff1a; 开机自检(BIOS) ----> MBR ----> GRUB ----> 加载内核 ----> 启动程序 1.1 开机自检 (1)开机自检&#xff1a;硬件启动POST(BIOS的一个主要功能)来加电检测硬件 (2)指引硬件&#xff1a;主板…

结构体的内存对齐

目录 对齐规则&#xff1a; 为什么存在内存对齐&#xff1f; 对齐规则&#xff1a; 1、结构体的第一个成员对齐到和结构体起始位置偏移量为0的地址处 2、其他成员变量要对齐到某个数字&#xff08;对齐数&#xff09;的整数倍的地址处。 对齐数 编译器默认的一个对齐数 与 …

openstack安装dashboard后登录网页显示404错误

1. 2.进入该目录vim /etc/httpd/conf.d/openstack-dashboard.conf 增加这一行 WSGIApplicationGroup %{GLOBAL} 重启httpd后就可以访问了

古月·ROS2入门21讲——学习笔记(一)核心概念部分1-14讲

讲解视频地址&#xff1a;1.ROS和ROS2是什么_哔哩哔哩_bilibili 笔记分为上篇核心概念部分和下篇常用工具部分 下篇&#xff1a;古月ROS2入门21讲——学习笔记&#xff08;二&#xff09;常用工具部分15-21讲-CSDN博客 目录 第一讲&#xff1a;ROS/ROS2是什么 1. ROS的诞生…

【Qt 学习笔记】Qt常用控件 | 按钮类控件Radio Button的使用及说明

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 按钮类控件Radio Button的使用及说明 文章编号&#xff…

数据结构---线性表

1&#xff0c;顺序表实现---动态分配 #include<stdlib.h> #define InitSize 10 typedef struct {int *data;//静态分配int length;int MaxSize; }SqList; void InitList(SqList& L) {L.data (int*)malloc(InitSize * sizeof(int));//分配空间L.length 0;L.MaxSize…

React 集成三方登录按钮样式的插件库

按钮不提供任何社交逻辑。 效果如下&#xff1a; 原地址&#xff1a;https://www.npmjs.com/package/react-social-login-buttons 时小记&#xff0c;终有成。

沐风老师3DMAX物品摆放插件ObjectPlacer安装和使用方法详解

3DMAX物品摆放插件ObjectPlacer安装和使用教程 3DMAX物品摆放插件ObjectPlacer&#xff0c;一键在曲面上摆放对象&#xff0c;如摆放家具物品、种植花草树木、布设电线杆交通标志等。它的功能是将对象与几何体对象&#xff08;网格、多边形、面片或NURBS&#xff09;的面法线对…

提高大型语言模型 (LLM) 性能的四种数据清理技术

原文地址&#xff1a;four-data-cleaning-techniques-to-improve-large-language-model-llm-performance 2024 年 4 月 2 日 检索增强生成&#xff08;RAG&#xff09;过程因其增强对大语言模型&#xff08;LLM&#xff09;的理解、为它们提供上下文并帮助防止幻觉的潜力而受…