理论基础、递归遍历、迭代遍历、统一迭代
- 理论基础
- 递归遍历
- 迭代遍历
- 前序
- 中序
- 后序
- 统一迭代
理论基础
今天的内容极其基础也极其重要,今天的不掌握好,之后一个半月都要坐大牢…
以前算法课上学的还行,可能还能记得一些(希望)
第一眼看这个代码,居然能没看懂构造函数,C++11白学了,寄!
struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}//构造函数⬆️
};
在二叉树的定义中,TreeNode(int x) : val(x), left(NULL), right(NULL) {} 是一个构造函数,用于创建一个二叉树节点。它接受一个整数参数 x,并将其赋值给节点的 val 成员变量。同时,它将节点的左子节点和右子节点初始化为 NULL。
这段代码使用了初始化列表(initializer list)的方式来初始化成员变量。val 是节点的值,left 和 right 分别是指向左子节点和右子节点的指针。通过将 left 和 right 初始化为 NULL,表示当前节点没有左子节点和右子节点。
这个构造函数可以用于创建二叉树的节点对象,并为节点对象设置初始值和子节点的指针。在构建二叉树时,可以使用这个构造函数来方便地创建节点对象,并设置节点的值和子节点的指针。
递归遍历
突然想起来今年一件很有意思的事,据说力扣今年过年开始一个多月的每日一题全都是树,每天都是树树树,搞了很多人心态(绷)
另外
确实也如卡哥所说
一看就会
一写就废
但给的三道题还是最基础,秒了
迭代遍历
前序
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
动画如下:
class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top(); // 中st.pop();result.push_back(node->val);if (node->right) st.push(node->right); // 右(空节点不入栈)if (node->left) st.push(node->left); // 左(空节点不入栈)}return result;}
};
此时会发现貌似使用迭代法写出前序遍历并不难,确实不难。
此时是不是想改一点前序遍历代码顺序就把中序遍历搞出来了?
其实还真不行!
但接下来,再用迭代法写中序遍历的时候,会发现套路又不一样了,目前的前序遍历的逻辑无法直接应用到中序遍历上。
中序
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
1.处理:将元素放进result数组中
2.访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
动画如下:
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) { // 指针来访问节点,访问到最底层st.push(cur); // 将访问的节点放进栈cur = cur->left; // 左} else {cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)st.pop();result.push_back(cur->val); // 中cur = cur->right; // 右}}return result;}
};
后序
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
所以后序遍历只需要前序遍历的代码稍作修改就可以了,代码如下:
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();result.push_back(node->val);if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)if (node->right) st.push(node->right); // 空节点不入栈}reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了return result;}
};
此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不像递归写法那样代码稍做调整,就可以实现前后中序。
这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!
上面这句话,可能一些同学不太理解,建议自己亲手用迭代法,先写出来前序,再试试能不能写出中序,就能理解了。
那么问题又来了,难道 二叉树前后中序遍历的迭代法实现,就不能风格统一么(即前序遍历 改变代码顺序就可以实现中序 和 后序)?
当然可以,这种写法,还不是很好理解,我们将在下一篇文章里重点讲解,敬请期待!
统一迭代
我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。
实践过的同学,也会发现使用迭代法实现先中后序遍历,很难写出统一的代码,不像是递归法,实现了其中的一种遍历方式,其他两种只要稍稍改一下节点顺序就可以了。
其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!
重头戏来了,接下来介绍一下统一写法。
我们以中序遍历为例,使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况。
那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。
如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。
class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中if (node->right) st.push(node->right); // 添加右节点(空节点不入栈)st.push(node); // 添加中节点st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。if (node->left) st.push(node->left); // 添加左节点(空节点不入栈)} else { // 只有遇到空节点的时候,才将下一个节点放进结果集st.pop(); // 将空节点弹出node = st.top(); // 重新取出栈中元素st.pop();result.push_back(node->val); // 加入到结果集}}return result;}
};
动画中,result数组就是最终结果集。
可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。
此时我们再来看前序、中序遍历代码。(各仅仅改了两行代码)
前序
class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();if (node->right) st.push(node->right); // 右if (node->left) st.push(node->left); // 左st.push(node); // 中st.push(NULL);} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};
后序
class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;if (root != NULL) st.push(root);while (!st.empty()) {TreeNode* node = st.top();if (node != NULL) {st.pop();st.push(node); // 中st.push(NULL);if (node->right) st.push(node->right); // 右if (node->left) st.push(node->left); // 左} else {st.pop();node = st.top();st.pop();result.push_back(node->val);}}return result;}
};