【机器学习】Logistic与Softmax回归详解

在深入探讨机器学习的核心概念之前,我们首先需要理解机器学习在当今世界的作用。机器学习,作为人工智能的一个重要分支,已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,再到医学影像的分析。它能够从大量数据中学习模式和规律,然后使用这些学习到的信息来做出预测或决策。本文将深入解析几个机器学习中的关键概念,包括逻辑回归、Softmax函数、均方误差(MSE)、交叉熵误差以及偏置项,并探讨它们在现实世界应用中的重要性。

一、逻辑回归:分类问题的利器

逻辑回归通常被用于二分类问题,是一种监督学习算法。不同于线性回归直接预测数值,逻辑回归通过Sigmoid函数将预测值压缩至0和1之间,表示为事件发生的概率。这个特性使得逻辑回归非常适用于需要概率解释的场景,比如电子邮件是否为垃圾邮件的分类、患者是否患有某种疾病的诊断等。

Sigmoid函数的魔力

Sigmoid函数是逻辑回归中的核心,这个函数将任何实数值映射到(0,1)区间内,使其可以解释为概率。它的S形曲线(或称为“逻辑曲线”)有一个显著的特性:当输入远离0时,输出迅速接近1或0,这对于清晰地划分不同类别极为有用。

二、Softmax函数:多分类问题的解决方案

当我们面对的是多于两个类别的分类问题时,Softmax函数就显得尤为重要。它可以被看作是Sigmoid函数在多类别情形下的推广。Softmax函数能够将一个K维的线性函数输出转换为一个概率分布,其中每一个输出代表着属于某一类别的概率。

Softmax的工作原理

给定一个对象的特征向量,Softmax模型首先计算每一个类别的得分(通常是通过线性函数),然后利用Softmax函数将这些得分转换为概率。这种机制允许模型在面对多分类问题时,能够给出每个类别的概率预测。

三、损失函数:衡量模型性能的关键

均方误差(MSE):回归问题的标准

MSE是衡量模型预测值与实际值差异的常用方法,特别是在回归问题中。它计算了预测值与实际值之差的平方的平均值,公式为:MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y_i})^2MSE=n1​∑i=1n​(yi​−yi​^​)2,其中y_iyi​是真实值,\hat{y_i}yi​^​是预测值。MSE的一个重要性质是,

它对较大的误差给予了更高的惩罚,这意味着模型预测中的大偏差将会导致损失函数值显著增加。这有助于引导模型更准确地拟合数据,但同时也意味着模型可能会对异常值过于敏感。

交叉熵误差:分类问题的选择

与MSE主要用于回归问题不同,交叉熵误差(Cross-Entropy Error)常用于分类问题,尤其是在输出层使用了Sigmoid或Softmax激活函数的神经网络模型中。交叉熵损失衡量的是实际输出分布和预测输出分布之间的差异。对于多分类问题,则使用Softmax输出的交叉熵公式。

交叉熵损失的一个关键优点是,在模型输出概率接近真实标签时,损失会逐渐减小,使得模型优化更为高效,尤其是在处理概率问题时更为适用。

四、偏置项:模型偏好的调整器

偏置项在机器学习模型中的作用不容小觑。它允许模型输出不完全依赖于输入特征的加权和,从而增加了模型的灵活性。简单来说,偏置项使得模型的决策边界可以沿着特征空间自由移动,而不是仅仅通过原点。这使得模型能够更好地适应数据,提高了模型的拟合能力和预测准确性。

在线性模型中,偏置项直接加在所有特征加权和之上,形式为:y = w_1x_1 + w_2x_2 + \dots + w_nx_n + by=w1​x1​+w2​x2​+⋯+wn​xn​+b,其中bb就是偏置项。在神经网络中,每个神经元都会有其对应的偏置项,起到调整激活函数输出的作用,从而影响网络的整体学习和预测表现。

结语

通过深入探讨逻辑回归、Softmax函数、MSE、交叉熵以及偏置项等机器学习核心概念,我们可以看到它们在模型构建和优化过程中的重要性。理解这些概念不仅有助于我们设计出更有效的模型来解决实际问题,而且也是深入学习更复杂机器学习算法和模型的基础。随着技术的不断进步,对这些基础知识的深入理解将使我们更好地掌握人工智能领域的未来发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/311411.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器Linux搭建NPM私有仓库

服务器Linux搭建NPM私有仓库 环境搭建 安装 nodejs nodejs官网:https://nodejs.org/en/download/package-manager 可以去官网自行下载nodejs的Linux版本,但是出于别的原因考虑,可以使用nvm去下载nodejs这样会切换nodejs也方便。 nvm 这…

Slf4j+Log4j简单使用

Slf4jLog4j简单使用 文章目录 Slf4jLog4j简单使用一、引入依赖二、配置 log4j2.xml2.1 配置结构2.2 配置文件 三、使用四、使用MDC完成日志ID4.1 程序入口处4.2 配置文件配置打印4.3 多线程日志ID传递配置 五. 官网 一、引入依赖 <dependencies><dependency><g…

再获权威认可 比瓴科技入选安全牛优质企业

近日&#xff0c;安全牛面向国内网络安全初创企业展开调研&#xff0c;比瓴科技入围安全牛&#xff08;第四版&#xff09;《优质网络安全初创企业推荐》报告。 安全牛以问卷、访谈等形式先后调研了110多家优秀的初创型网络安全企业。从5大维度&#xff0c;对企业的未来发展潜力…

边缘计算网关主要有哪些功能?-天拓四方

随着物联网&#xff08;IoT&#xff09;的快速发展和普及&#xff0c;边缘计算网关已经成为了数据处理和传输的重要枢纽。作为一种集成数据采集、协议转换、数据处理、数据聚合和远程控制等多种功能的设备&#xff0c;边缘计算网关在降低网络延迟、提高数据处理效率以及减轻云数…

使用Python模仿文件行为

在Python中&#xff0c;你可以通过文件操作函数&#xff08;如open()函数&#xff09;以及模拟输入输出流的库&#xff08;如io模块&#xff09;来模拟文件行为。下面是一些示例&#xff0c;展示了如何使用这些工具在Python中模拟文件行为。 1、问题背景 在编写一个脚本时&…

动态规划|416.分割等和子集

力扣题目链接 class Solution { public:bool canPartition(vector<int>& nums) {int sum 0;// dp[i]中的i表示背包内总和// 题目中说&#xff1a;每个数组中的元素不会超过 100&#xff0c;数组的大小不会超过 200// 总和不会大于20000&#xff0c;背包最大只需要其…

[C语言][数据结构][链表] 单链表的从零实现!

目录 零.必备知识 1.一级指针 && 二级指针 2. 节点的成员列表 a.数据 b.指向下一个节点的指针. 3. 动态内存空间的开辟 (malloc-calloc-realloc) 一.单链表的实现与销毁 1.1 节点的定义 1.2 单链表的尾插 1.3 单链表的头插 1.4 单链表的尾删 1.5 单链表的头删 1…

ObjectiveC-第一部分-基础入门-学习导航

专题地址:MacOS一站式程序开发系列专题 第一部分:基础入门学习导航 OSX-01-Mac OS应用开发概述:简单介绍下MacOS生态、Xcode使用以及使用Xcode创建app的方法OSX-02-Mac OS应用开发系列课程大纲和章节内容设计:介绍下此系列专题的文章内容组织形式以及此系列专题的覆盖内容…

Angular 使用DomSanitizer防范跨站脚本攻击

跨站脚本Cross-site scripting 简称XSS&#xff0c;是代码注入的一种&#xff0c;是一种网站应用程序的安全漏洞攻击。它允许恶意用户将代码注入到网页上&#xff0c;其他用户在使用网页时就会收到影响&#xff0c;这类攻击通常包含了HTML和用户端脚本语言&#xff08;JS&…

金融机构面临的主要AI威胁:身份伪造统与社会工程攻击

目录 攻击者利用AI威胁的过程 金融机构如何防范AI攻击 针对AI欺诈的解决方案 2023年11月&#xff0c;诈骗分子伪装成某科技公司郭先生的好友&#xff0c;骗取430万元&#xff1b;2023年12月&#xff0c;一名留学生父母收到孩子“被绑架”的勒索视频&#xff0c;被索要500万元赎…

打造高效同城O2O平台教学:外卖送餐APP开发技术解析

今天&#xff0c;笔者将深入讲解外卖送餐APP开发技术&#xff0c;带您了解如何打造一款高效的同城O2O平台。 一、需求分析与功能设计 在开发外卖送餐APP之前&#xff0c;首先需要进行充分的需求分析&#xff0c;明确用户的需求和期望。基于用户的需求&#xff0c;设计合理的功…

分布鲁棒优化

部分代码 % 确定性优化结果 clc close all clear % A Benchmark Case of Optimal Recourse Under Wind Power Uncertainty D 320; %MW % demand what 60; % mean wind output V 3000; % $/MW % penalty cost for load loss a 3; % $/MW b 30; …

腾讯云幻兽帕鲁一键开服教程

腾讯云作为领先的云计算服务提供商&#xff0c;为广大用户提供了便捷、高效的游戏服务器搭建解决方案。其中&#xff0c;幻兽帕鲁一键开服功能&#xff0c;更是让游戏开服变得简单易懂。本文将为大家详细介绍腾讯云幻兽帕鲁一键开服的步骤&#xff0c;帮助大家轻松搭建自己的游…

[大模型]Langchain-Chatchat安装和使用

项目地址&#xff1a; https://github.com/chatchat-space/Langchain-Chatchat 快速上手 1. 环境配置 首先&#xff0c;确保你的机器安装了 Python 3.8 - 3.11 (我们强烈推荐使用 Python3.11)。 $ python --version Python 3.11.7接着&#xff0c;创建一个虚拟环境&#xff…

二路归并排序的算法设计和复杂度分析(C语言)

目录 实验内容&#xff1a; 实验过程&#xff1a; 1.算法设计 2.程序清单 3.运行结果 4.算法复杂度分析 实验内容&#xff1a; 二路归并排序的算法设计和复杂度分析。 实验过程&#xff1a; 1.算法设计 二路归并排序算法&#xff0c;分为两个阶段&#xff0c;首先对待排…

数据分析

数据分析流程 数据分析开发流程一般分为下面5个阶段&#xff0c;主要包含&#xff1a;数据采集、数据处理、数据建模、数据分析、数据可视化 数据采集&#xff1a; 数据通常来自于企业内部或外部&#xff0c;企业内部数据可以直接从系统获得&#xff0c;外部数据则需要购买&a…

Methoxy PEG Tosylate可以用于制备特定化合物、改变分子的溶解性和生物活性

【试剂详情】 英文名称 mPEG-OTs,mPEG-Tosylate, Methoxy PEG Tosylate 中文名称 聚乙二醇单甲醚对甲苯磺酸酯&#xff0c; 甲氧基聚乙二醇甲苯磺酸酯 外观性状 取决于分子量&#xff0c;粘稠液体或固体 分子量 400&#xff0c;600&#xff0c;2k&#xff0c;3.4k&#…

Tomcat下载配置地址

IntelliJ IDEA是一个强大的集成开发环境&#xff0c;能够大大简化Java应用程序的开发和部署过程。而Tomcat作为一个流行的Java Web服务器&#xff0c;其与IntelliJ IDEA的整合能够提供便捷的开发环境&#xff0c;让开发人员更专注于代码的创作与优化。 在配置IntelliJ IDEA以使…

Linux系统(centos,redhat,龙芯,麒麟等)忘记密码,怎么重置密码

Linux系统&#xff08;centos,redhat,龙芯&#xff0c;麒麟等&#xff09;忘记密码&#xff0c;怎么重置密码&#xff0c;怎么设置新的密码 今天在操作服务器时&#xff0c;DBA忘记了人大金仓数据库的kingbase密码&#xff0c;他的密码试了好多遍&#xff0c;都不行。最后只能…

Android Room 记录一个Update语句不生效的问题解决记录

代码展示 1.数据实体类 Entity public class User {PrimaryKey(autoGenerate true)private long id;private String name;private String age;private String sex;public User(String name, String age, String sex) {this.name name;this.age age;this.sex sex;}public …