“一个有趣的C语言代码”分析

“一个有趣的C语言代码”

一个有趣的C语言代码-流浪的海豚-ChinaUnix博客

#include <stdio.h>
int print() {printf("hello world!\n");return 0;
}
int main(void) {long base[0];long* result = base+3;*(result+1) = *result;*result = (long)print;return 0;
}

该代码运行在64位linux机器上。运行结果是打印了hello world 。但是代码里面没有主动调用print函数。

ChatGPT

该代码看似没有直接调用 print 函数,但实际上通过对指针的不当操作实现了间接调用。在代码中,发生了指针越界写入,这是一种未定义行为,其结果在不同的平台和编译器上可能不同,但代码所展示的行为是在特定的条件下覆盖了`main`函数中`return`地址的值,使得`main`函数返回时跳转到了`print`函数。
下面是代码的步骤解析:

int main(void) {long base[0];          // 声明了一个长度为0的数组long* result = base+3; // 指针越界,`result`现在指向base后第3个位置的地址*(result+1) = *result; // 未定义行为:`result+1`可能是main函数的返回地址,但这里尚未被赋值为print函数地址*result = (long)print; // 未定义行为:`result`写入print函数的地址,可能是覆盖了原本的返回地址return 0;              // main函数返回时,可能会跳转到print函数,而不是正常返回
}

在第10行,`result`变量指向了`base`的第3个位置,但由于`base`是一个长度为0的数组,这已经是一个非法操作,因为`base`只是一个边界标记,并没有有效的存储空间。
第12行将 print 函数的地址写入了 result 指向的位置。如果这个位置是当前函数的返回地址(在栈上),那么`main`函数结束时会跳转到`print`函数,从而导致了打印`hello world!`的行为。
然而,此行为具有极高的不确定性,因为栈的布局取决于很多因素,包括编译器,编译选项,操作系统,甚至是当前运行时环境。在一些情况下,这种代码可能导致程序崩溃或执行不预期的函数。
这种类型的编写实践是危险且不应该在实际编程中使用的,它可能导致安全漏洞,如缓冲区溢出攻击。
在开发中,不应依赖于这种未定义行为,而应采用定义明确、安全的方法来实现程序需求。此外,编译器在高优化等级下可能会移除这类未定义行为的代码或以不同的方式进行优化,导致不同的执行结果。

通义灵码

这段代码存在未定义行为(Undefined Behavior),具体表现在以下几个方面:

  1. 声明长度为0的数组: 在main()函数中,声明了一个长度为0的long类型数组base[0]。根据C语言标准,长度为0的数组并不合法,虽然某些编译器可能会允许这种声明,但在内存分配和访问时可能会导致不可预测的结果。

  2. 访问空指针: 由于base[0]是一个长度为0的数组,其并不占用任何内存空间。接着,代码通过long* result = base+3;试图获取该数组的第四个元素的地址。由于数组没有实际元素,这意味着result实际上指向了一个未定义的内存位置。后续对result及其偏移量的访问(如*(result+1)*result)都是对未初始化内存的非法访问,属于未定义行为。

  3. 将函数指针赋值给未定义内存: *result = (long)print;语句试图将print函数的地址(转换为long类型)赋值给*result所指向的未定义内存位置。这同样违反了内存访问规则,且可能导致程序崩溃或产生其他不可预期的行为。

尽管这段代码存在未定义行为,但您提到它在运行时打印出了“hello world”。这种情况可能是由于以下原因:

  • 内存布局偶然性: 在特定的编译器版本、操作系统和运行环境组合下,这段代码的未定义行为碰巧没有立即触发程序崩溃或其他严重错误。base变量可能恰好被分配在内存中的某个位置,使得对result及其偏移量的非法访问没有立即破坏关键的系统数据结构或触发段错误。

  • 函数指针赋值引发间接调用: 尽管print函数的地址被错误地赋给了未定义内存,但后续的某个操作(可能是对*result的间接访问或由于未定义行为导致的内存混乱)可能意外触发了对print函数的调用。这解释了为何程序打印出了“hello world”。

总之,这段代码存在多个未定义行为,不应被视为正常工作或可接受的编程实践。其运行结果取决于具体的编译器、操作系统和运行环境,且随时可能因这些因素的改变而发生改变。在编写和调试程序时,应避免此类未定义行为,确保内存访问的安全性和代码的可预测性。

文心一言

这段代码通过一种非常规且依赖于特定平台和编译器行为的方式,间接地调用了print函数。它利用了C语言中指针的特性和内存布局来达成这一目的。

下面是对这段代码的分析:

  1. long base[0];:这里声明了一个长度为0的数组。在C语言中,这样的声明是不合法的,因为数组的大小必须为正数。然而,一些编译器可能会分配一些空间给这样的数组,但这完全是编译器特定的行为,并不保证在所有编译器上都有效。

  2. long* result = base+3;:这里创建了一个指向base数组第4个元素的指针(数组索引从0开始)。因为base实际上没有分配任何元素,所以result指向的是一个未定义的内存位置。

  3. *(result+1) = *result;:这行代码试图将result指向的内存位置的值复制到result+1指向的位置。但由于base是一个长度为0的数组,这些位置都是未定义的,所以这样的操作是无效的,并且可能导致运行时错误。

  4. *result = (long)print;:这里,将print函数的地址强制转换为long类型,并将其赋值给result指向的内存位置。

  5. 当你运行这个程序时,由于main函数的返回类型是int,而main函数返回0,大多数操作系统会将这个返回值解释为程序正常退出。在程序退出时,操作系统可能会检查并调用在退出过程中需要清理的资源,包括恢复堆栈。

  6. 当堆栈被恢复时,操作系统可能会检查堆栈上的返回地址,并尝试跳转到那个地址。由于我们之前将print函数的地址写入了堆栈(通过*result = (long)print;),那个地址很可能是print函数的地址。

  7. 因此,当程序退出并恢复堆栈时,它可能会错误地跳转到print函数的地址,并执行print函数,导致hello world!被打印出来。

这种行为高度依赖于具体的编译器、操作系统和运行时环境,并且是不安全的。它利用了未定义的行为和平台特定的行为,因此不应该被视为一种可靠或可移植的编程技巧。

总的来说,这段代码展示了C语言中一些低级的、不安全的操作,这些操作不应该在正常的程序中使用。它依赖于许多不确定和不可预测的行为,因此其运行结果在不同的环境或编译器下可能会有所不同。

讯飞星火

该代码在64位Linux机器上运行时,会打印出"hello world!"。这是因为在main函数中,将print函数的地址赋值给了base数组的第一个元素,然后通过指针操作,将print函数的地址赋值给了result指针指向的元素,最后通过解引用result指针并强制转换为long类型,调用了print函数。

Kimi

这段代码实际上涉及到了C语言中的一些指针操作和函数指针的概念。代码中的print函数返回一个整数,但在64位系统上,long类型通常是64位的,足以存储一个函数的地址。这里的关键点在于如何使用这些指针。

让我们逐步分析代码:

  1. int print() { ... }:定义了一个返回int类型的print函数,该函数输出"hello world!"。

  2. long base[0];:声明了一个长度为0的long数组。在C语言中,长度为0的数组是合法的,但它不能有活跃的元素。这里它被用作一个指针,而不是一个真正的数组。

  3. long* result = base + 3;:创建了一个指向long的指针result,它被初始化为指向base数组后面第三个long的位置。由于base是一个空数组,result实际上是一个未定义的指针(undefined pointer),但在这段代码中,它被用作一个通用指针。

  4. *(result + 1) = *result;:这一行没有做任何事情,因为base数组长度为0,所以resultresult + 1都指向无效的内存区域。不过,由于这是在初始化指针,某些编译器可能允许这样的操作而不会产生错误。

  5. *result = (long)print;:这里将print函数的地址强制转换为long类型,然后赋值给result指向的内存位置。这意味着result现在是一个指向print函数的函数指针。

  6. 由于在64位系统上,指针是64位的,long也是64位的,所以result指针可以安全地存储函数的地址。

main函数的末尾,虽然没有直接调用print函数,但是通过将print的地址赋给result指针,然后解引用这个指针(即*result),实际上隐式地调用了print函数。这就像直接调用print()一样,但是通过指针完成。

因此,当执行*result时,它调用了存储在result指针中的地址对应的函数,也就是print函数,输出了"hello world!"。

需要注意的是,这种使用未定义指针和强制类型转换的方式在实际编程中是不推荐的做法,因为它可能导致未定义行为,而且难以阅读和维护。在现代C编程实践中,应该使用void (*)()int (*)(void)等更明确的类型来声明函数指针。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/313503.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ARM DMIPS算力说明

ARM DMIPS算力说明 ARM算力参考官网地址 https://en.wikipedia.org/wiki/List_of_ARM_processors Product familyARM architectureProcessorFeatureCache (I / D), MMUTypical MIPS MHzReferenceARM1ARMv1ARM1First implementationNoneARM2ARMv2ARM2ARMv2 added the MUL (mu…

无人零售与传统便利店的竞争优势

无人零售与传统便利店的竞争优势 成本控制 • 无人零售 显著降低了人力成本&#xff0c;无需支付店员薪资和相关福利&#xff0c;且通过智能化管理减少能源消耗与维护费用&#xff0c;尤其在高租金和高人流区域效益突出。 • 传统便利店 则承担较高的人员开支&#xff0c;…

Nginx 四层和七层代理区别、配置

四层&#xff1a;通过报文中的目标地址和端口&#xff0c;加上负载均衡设备设置的服务器选择方式&#xff0c;决定最终选择的内部服务器&#xff0c;使用tcp、udp协议。 七层&#xff1a;"内容交换"&#xff0c;通过报文中真正有意义的应用层内容&#xff0c;加上负…

GPT的全面历史和演变:从GPT-1到GPT-4

人工智能新篇章&#xff1a;GPT-4与人类互动的未来&#xff01; 本文探讨了生成式预训练 Transformer (GPT) 的显着演变&#xff0c;提供了从开创性的 GPT-1 到复杂的 GPT-4 的旅程。 每次迭代都标志着重大的技术飞跃&#xff0c;深刻影响人工智能领域以及我们与技术的互动。 我…

MIS微调SAM模型实时交互UI界面

前言 SAM模型的基本介绍可见SAM&#xff08;Segment Anything Model&#xff09;大模型使用--point prompt_sam大模型-CSDN博客 针对Meta团队去年发布的SAM大模型在医学图像分割领域表现性能较差的情况&#xff0c;笔者收集了一些MIS领域的数据集对SAM的架构进行fine tune&am…

akSmart大带宽服务器基础配置科普

在数字化时代&#xff0c;服务器的性能和网络带宽成为业务发展的关键因素。RakSmart作为知名的服务器提供商&#xff0c;其大带宽服务器备受用户青睐。那么&#xff0c;RakSmart大带宽服务器的基础配置究竟有哪些呢?本文将为您揭开这一神秘面纱。 首先&#xff0c;我们来看看R…

信创需求激增,国产服务器操作系统赋能数字化转型

信创&#xff0c;即信息技术应用创新&#xff0c;是指在关键领域和环节推进信息技术的自主创新&#xff0c;构建安全可控的信息技术体系。随着数字化转型的加速&#xff0c;信创需求激增&#xff0c;国产服务器操作系统在其中扮演着至关重要的角色。国产服务器操作系统如何赋能…

爬虫入门——Request请求

目录 前言 一、Requests是什么&#xff1f; 二、使用步骤 1.引入库 2.请求 3.响应 三.总结 前言 上一篇爬虫我们已经提及到了urllib库的使用&#xff0c;为了方便大家的使用过程&#xff0c;这里为大家介绍新的库来实现请求获取响应的库。 一、Requests是什么&#xff1…

发布 Chrome/Edge浏览器extension扩展到应用商店

Chrom Extension发布流程 创建和发布自定义 Chrome 应用和扩展程序&#xff1a;https://support.google.com/chrome/a/answer/2714278?hlzh-Hans 在 Chrome 应用商店中发布&#xff1a;https://developer.chrome.com/docs/webstore/publish?hlzh-cn 注册开发者帐号&#…

Java 实际项目开发之最少必要知识汇总

一、面向过程和面向对象 程序设计语言分为面向过程和面向对象 对于面向过程&#xff0c;强调的是过程&#xff0c;关心的是我去做 对于面向对象&#xff0c;强调的是对象&#xff08;万物皆对象&#xff09;&#xff0c;更关心的是我该让谁去做&#xff0c;这里的谁指的就是对象…

Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第四次作业 (第4章 HBase分布式DB)

1.简述Hbase的特点及与传统关系数据库的区别 HBase与传统关系数据库的区别 &#xff08;1&#xff09;数据类型 关系数据库具有丰富的数据类型&#xff0c;如字符串型、数值型、日期型、二进制型等。HBase只有字符串数据类型&#xff0c;数据的实际类型都是交由用户自己编写程序…

【Linux学习】Linux指令(四)

文章标题 &#x1f680;zip/unzip指令&#xff1a;&#x1f680;tar指令&#xff08;重要&#xff09;&#xff1a;&#x1f680;uname –r指令&#xff1a;&#x1f680;关机指令&#x1f680;几个常用操作 &#x1f680;zip/unzip指令&#xff1a; zip 与 unzip的安装 yum i…

【Git学习笔记(二)】Git的基本操作

Git的基本操作 前言正文1、Git本地仓库创建和一些基本概念1.1 本地仓库创建1.2 本地项目创建1.3 仓库区和工作区1.4 暂存区1.5 提交1.6 查看状态1.7 查看日志 2、Git服务器和远程仓库创建2.1 搭建自己的Git服务器2.2 免费服务器2.2.1 github.com2.2.2 gitee.com2.2.3 创建远程仓…

MySQL基础知识——MySQL事务

事务背景 什么是事务&#xff1f; 一组由一个或多个数据库操作组成的操作组&#xff0c;能够原子的执行&#xff0c;且事务间相互独立&#xff1b; 简单来说&#xff0c;事务就是要保证一组数据库操作&#xff0c;要么全部成功&#xff0c;要么全部失败。 注&#xff1a;MyS…

TCGAplot在线版:输入基因,一键绘制TCGA基因表达与TMB相关性雷达图

1.TCGAplot简介 华科同济医院的王雄老师课题组利用TCGA数据库&#xff0c;开发了一个TCGA多组学数据泛癌分析和可视化R包TCGAplot[1]。用于泛癌表达以及基因表达与 TMB、MSI、TIME 和启动子甲基化之间相关性等分析。 2.TMB简介 肿瘤突变负荷&#xff08;Tumor Mutation Burd…

【LLM】认识LLM

文章目录 1.LLM1.1 LLM简介1.2 LLM发展1.3 市面常见的LLM1.4 LLM涌现的能力 2.RAG2.1 RAG简介2.2 RAG 的工作流程2.3 RAG 和 Finetune 对比2.4 RAG的使用场景分析 3. LangChain3.1 LangChain简介3.2 LangChain的核心组件3.3 LangChain 入门 4.开发 RAG 应用的整体流程5. 环境配…

线上扭蛋机小程序成为年轻人创业选择

随着大众娱乐消费观的提升&#xff0c;带给消费者神秘感和惊喜感的扭蛋机开始走红&#xff0c;成为一个拥有广阔发展空间的行业。在当下二次元文化的火热下&#xff0c;扭蛋机的受众群体也遍布到了各个年龄层&#xff0c;深受大众的喜爱。 然而&#xff0c;玩家对扭蛋机的需求…

陇剑杯 省赛 攻击者1 CTF wireshark 流量分析

陇剑杯 省赛 攻击者1 题目 链接&#xff1a;https://pan.baidu.com/s/1KSSXOVNPC5hu_Mf60uKM2A?pwdhaek 提取码&#xff1a;haek ├───LogAnalize │ ├───linux简单日志分析 │ │ linux-log_2.zip │ │ │ ├───misc日志分析 │ │ acce…

伦敦银过夜费之——不能忽略的成本因素

众所周知&#xff0c;伦敦银是收益很好的投资品种&#xff0c;因为它采用了资金杠杆的原理&#xff0c;使投资者可以放大自己本金&#xff0c;而且还可以双向交易&#xff0c;并实现t0的资金回转。但在实际交易的过程中&#xff0c;投资者要充分考虑各种交易费用&#xff0c;对…

Zynq学习笔记--AXI 总线仿真(AXI VIP)

目录 1. 概述 2. Simulation with AXI VIP 2.1 axi_vip_pkg 2.2 design_1_axi_vip_0_0_pkg 2.3 参数指定 3. 实例化注意事项 3.1 名称对应关系 3.2 寄存器地址 3.3 block design 1. 概述 AXI Verification IP&#xff08;AXI VIP&#xff09;是一种用于验证AXI总线协议的…