【算法】人工蜂群算法,解决多目标车间调度问题,柔性车间调度问题

文章目录

  • 复现论文
  • 什么是柔性作业车间调度问题?
  • 数据处理
  • ABC算法
    • 编码解码
    • 种群初始化
    • 雇佣蜂操作
      • IPOX交叉
      • 多点交叉
    • 观察蜂操作
    • 侦察蜂操作
    • 算法流程
  • 结果
  • 程序截图
  • 问询、帮助

复现论文

在这里插入图片描述

什么是柔性作业车间调度问题?

也叫多目标车间调度问题。

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,简称FJSP)是传统作业车间调度问题的一种扩展。在传统的作业车间调度问题中,每个工件的每个工序只能在指定的一台机器上加工。而在柔性作业车间调度问题中,突破了这种资源唯一性的限制,允许每个工件的每个工序在多台不同的机器上加工,且这些机器上的加工时间可能不同。

这种灵活性使得作业车间调度问题更加贴合实际生产情况,因为实际生产中,同一道工序可能由不同的机器完成,不同的机器完成同一工序的时间和成本也可能有所差异。因此,FJSP 考虑了更多的生产实际,其目标通常是最小化最大完工时间(makespan),即所有工件中最后一个完工的工件的完成时间。

柔性作业车间调度问题的复杂性较高,因为它不仅要考虑工序的加工顺序,还要考虑不同机器上的加工时间差异,以及可能的机器选择问题。这些问题的组合导致了庞大的搜索空间,使得找到最优解或近似最优解成为一个具有挑战性的优化问题。

在数据集中,有10个待加工的工件,每一行就是一个工件。

下图是数据集截图,表示是,工件0一共有6个工序。后面数字是21534,表示第一道工序可选机器有2个,选择机器1花费时间为5可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工。后面3533521是一组,表示第二个工序可选机器有3个,选择机器1花费时间为5可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工,选择机器3花费时间为4可以完成这个工序的加工
在这里插入图片描述

全部数据集如下:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34
6,2,1,5,3,4,3,5,3,3,5,2,1,2,3,4,6,2,3,6,5,2,6.0,1.0,1.0,1.0,3.0,1.0,3.0,6.0,6.0,3.0,6.0,4.0,3.0
5,1,2,6,1,3,1,1,1,2,2,2,6,4,6,3,6,5,2,6,1,1,,,,,,,,,,,,,
5,1,2,6,2,3,4,6,2,3,6,5,2,6,1,1,3,3,4,2,6,6,6.0,2.0,1.0,1.0,5.0,5.0,,,,,,,
5,3,6,5,2,6,1,1,1,2,6,1,3,1,3,5,3,3,5,2,1,2,3.0,4.0,6.0,2.0,,,,,,,,,
6,3,5,3,3,5,2,1,3,6,5,2,6,1,1,1,2,6,2,1,5,3,4.0,2.0,2.0,6.0,4.0,6.0,3.0,3.0,4.0,2.0,6.0,6.0,6.0
6,2,3,4,6,2,1,1,2,3,3,4,2,6,6,6,1,2,6,3,6,5,2.0,6.0,1.0,1.0,2.0,1.0,3.0,4.0,2.0,,,,
5,1,6,1,2,1,3,4,2,3,3,4,2,6,6,6,3,2,6,5,1,1,6.0,1.0,3.0,1.0,,,,,,,,,
5,2,3,4,6,2,3,3,4,2,6,6,6,3,6,5,2,6,1,1,1,2,6.0,2.0,2.0,6.0,4.0,6.0,,,,,,,
6,1,6,1,2,1,1,5,5,3,6,6,3,6,4,3,1,1,2,3,3,4,2.0,6.0,6.0,6.0,2.0,2.0,6.0,4.0,6.0,,,,
6,2,3,4,6,2,3,3,4,2,6,6,6,3,5,3,3,5,2,1,1,6,1.0,2.0,2.0,6.0,4.0,6.0,2.0,1.0,3.0,4.0,2.0,,

最终目标是要求加工完所有工件所需要的最小时间:

在这里插入图片描述

数据处理

10种类型的工件要加工,一共有6台机器:

da = data_deal(10, 6)

读取数据,解析数据:

Tmachine, Tmachinetime, tdx, work, tom, machines = da.cacu() 

Tmachine 一行就是一个工件可以选择的机器。不足长度的补充0。
在这里插入图片描述
Tmachinetime和Tmachine 同样形状,表示每个机器对应需要多少时间:
在这里插入图片描述
tdx表示每个工序可选的机器数量,比如第一个零件的第一个工序可以选择2台机器加工。而且tdx[0]的长度表示了零件0需要有6个工序才能加工完成。
在这里插入图片描述

ABC算法

ABC(Artificial Bee Colony)算法是一种启发式优化算法,模拟了蜜蜂在寻找食物过程中的行为。这个算法由三种类型的蜜蜂组成:雇佣蜂、观察蜂和侦查蜂。

  1. 雇佣蜂:雇佣蜂负责在已知的蜜源周围搜索,它们相当于解决问题的候选解。每个蜜源都对应一个雇佣蜂,它们具有记忆功能,能够存储搜索到的蜜源信息,并根据蜜源的好坏与观察蜂分享信息。

  2. 观察蜂:观察蜂接收雇佣蜂分享的蜜源信息,并选择其中满意的蜜源进行跟随。观察蜂的数量与雇佣蜂相等。

  3. 侦查蜂:侦查蜂负责搜索新的蜜源位置,以保持算法的多样性和全局搜索能力。

这三种蜜蜂之间可以相互转换,以达到更好的搜索效果。ABC 算法通过模拟蜜蜂群体的这种协作和信息共享机制,实现了对优化问题的求解。

在这里插入图片描述

编码解码

ABC算法是一种启发式优化算法,最初用于处理连续解空间的问题。然而,在柔性作业车间调度这种离散问题中,标准的ABC算法并不直接适用。因此,我们需要对问题进行适当的编码和解码。

针对柔性作业车间调度问题,我们采用双层编码的形式:

  1. 工序串编码:这一层编码用于确定工序的加工顺序。比如,考虑一个工序串[3 1 2 1 2 2],它表示了不同工件的工序顺序。在这个串中,数字代表工件号,数字出现的次数表示该工件有多少个工序。比如,在串中的第一个数字3表示工件3的第一个工序,第一个数字1表示工件1的第一个工序。因此,工序串的加工顺序为:O31 → O11 → O21 → O12 → O22 → O23。

  2. 机器串编码:这一层编码表示每个工序选择的机器。比如,机器串编码[2 2 1 1 3 3]表示了每个工序选择的机器编号。在这个串中,数字代表机器编号,按工件序号和工序顺序排列。比如,在串中的第一个位置的数字2表示工序O11选择了机器M2进行加工,第五个位置的数字1表示工序O23选择了机器M1进行加工。

通过这样的双层编码,我们可以将柔性作业车间调度问题转化为一个适合ABC算法处理的问题。

在代码种,对应为:


class FJSP():def __init__(self, job_num, machine_num, P_GLR, parm_data, P_MSR):self.job_num = job_num  # 工件数self.machine_num = machine_num  # 机器数self.p1 = P_GLR[0]  # 全局选择的概率self.p2 = P_GLR[1]  # 局部选择的概率self.Tmachine, self.Tmachinetime, self.tdx, self.work, self.tom = parm_data[0], parm_data[1], parm_data[2], \parm_data[3], parm_data[4]self.machines = parm_data[5]self.p3 = P_MSR[0]  # 剩余负荷最大规则的概率self.p4 = P_MSR[1]  # 加工时间最短的概率def creat_Machine(self):job = np.copy(self.work)Ma_time = np.zeros((self.job_num,))machine, machine_time = [], []  # 初始化矩阵a_global = np.zeros((1, self.machine_num))r = np.random.rand()for i in range(self.job_num):a_part = np.zeros((1, self.machine_num))time = 0for j in range(self.machines[i]):highs = self.tom[i][j]lows = self.tom[i][j] - self.tdx[i][j]n_machine = self.Tmachine[i, lows:highs].tolist()n_time = self.Tmachinetime[i, lows:highs].tolist()index_select = []if r < self.p1 or r > 1 - self.p2:for k in range(len(n_machine)):m = int(n_machine[k]) - 1index_select.append(m)t = n_time[k]a_global[0, m] += t  # 全局负荷计算a_part[0, m] += t  # 局部负荷计算if r < self.p1:  # 全局选择select = a_global[:, index_select]idx_select = np.argmin(select[0])else:  # 局部选择select = a_part[:, index_select]idx_select = np.argmin(select[0])m_select = n_machine[idx_select]t_index = n_machine.index(m_select)machine.append(m_select)machine_time.append(n_time[t_index])time += n_time[t_index]else:  # 否则随机挑选机器index = np.random.randint(0, len(n_time), 1)machine.append(n_machine[index[0]])machine_time.append(n_time[index[0]])time += n_time[index[0]]Ma_time[i] = timereturn machine, machine_time, Ma_timedef creat_job(self):count = np.zeros((1, self.job_num), dtype=np.int_)machine, machine_time, Ma_time = self.creat_Machine()time_last = Ma_time.copy()rember = [sum(self.machines[:i]) for i in range(len(self.machines))]job = []for i in range(len(self.work)):r = np.random.rand()a = np.argwhere(time_last > 0)  # 挑选剩余工件加工时间大于0的索引if r < self.p3 + self.p4:  # 剩余负荷最大规则和加工时间最短优先规则b = time_last[a].reshape(a.shape[0], ).tolist()  # 按照索引取出具体工件的加工时间if r < self.p3:  # 剩余负荷最大规则a_index = b.index(max(b))jobb = int(a[a_index, 0])job.append(jobb)else:  # 加工时间最短优先规则a_index = b.index(min(b))jobb = int(a[a_index, 0])job.append(jobb)else:  # 随机选择规则index = np.random.randint(0, a.shape[0], 1)jobb = int(a[index, 0])job.append(jobb)loc = count[0, jobb]loc1 = rember[jobb] + loctime = machine_time[loc1]time_last[jobb] -= time  # 更新剩余工件加工时间count[0, jobb] += 1return job, machine, machine_time

种群初始化

种群初始化对于算法的性能至关重要。如果完全随机生成初始种群,那么初始解的质量可能参差不齐,这会影响算法寻找最优解的速度,可能需要增加迭代次数和种群大小来获得更好的结果,这会增加优化时间。为了解决这个问题,我们采用了随机选择和按规则选择相结合的方法来初始化种群。

在机器串编码中,我们采用了三种初始化规则:全局选择(Global Selection,GS)、局部选择(Local Selection,LS)和随机选择(Random Selection,RS)。GS和LS可以平衡每台机器的负载,提高机器利用率,从而在一定程度上减小初始解的最大完工时间。而具有强随机性的RS可以保证初始解的多样性,能够取得解空间中的任意解。

在工序串编码中,我们采用了三种初始化规则:剩余负荷最大规则(Maximum Residual Load,MRL)、加工时间最短优先规则(Shortest Process Time,SPT)和随机选择(Random Selection,RS)。MRL优先处理剩余加工时间最长的工件,SPT优先处理剩余加工时间最短的工件,而RS则随机选择工序进行排序。

为了更好地平衡这些规则的应用,我们对机器串和工序串生成规则进行了概率分配。具体来说,机器串生成规则GS/LS/RS的选择概率分别为30%、30%和40%,而工序串的生成规则MRL/SPT/RS的选择概率也分别为30%、30%和40%。

这样的概率分配旨在保证算法能够在初始阶段充分利用规则性和随机性,从而获得多样性的初始种群,有利于提高算法的搜索效率和收敛性。

雇佣蜂操作

针对柔性作业车间调度问题,我们对传统的雇佣蜂操作进行了改进,采用了两种交叉方法:IPOX交叉和多点交叉。

IPOX交叉

在IPOX交叉中,我们首先从种群中选择一条工序串作为父代X1,并生成一个0到1之间的随机数。如果随机数小于0.5,则选择全局最优解作为X2;否则,从种群中选择另一条工序串作为X2(但不同于X1)。接下来,我们将工件分为两个互补的工件集R1和R2。然后,我们将X1中包含在R1工件集中的工序号按照在X1中的位置复制到子代C1中,并将X2中包含在R2工件集中的工序按照原顺序插入到C1的空缺处。类似地,我们将X2中包含在R2工件集中的工序号复制到子代C2中,并将X1中包含在R1工件集中的工序按照原顺序插入到C2的空缺处。最后,我们计算子代C1和C2的适应度值,选择适应度值较大的子代作为交叉后的子代,并检查是否需要替换父代X1的适应度值。

多点交叉

多点交叉作用于机器串的交叉操作。首先,我们选择与父代X1工序串对应的机器串作为机器串父代P1,并选择与父代X2工序串对应的机器串作为机器串父代P2。然后,我们随机生成一个由0和1组成的与机器串长度相等的二进制串。接着,我们将P1中与二进制串中与1位置相同的机器号复制到子代S1的相同位置,并将P2中与二进制串中与0位置相同的机器号复制到S1的相同位置。然后,我们将P2中与二进制串中与1位置相同的机器号复制到子代S2的相同位置,并将P1中与二进制串中与0位置相同的机器号复制到S2的相同位置。最后,我们计算子代S1和S2的适应度值,选择适应度值较大的作为机器串多点交叉后的子代,并检查是否需要替换父代P1的适应度值。

这两种交叉方法不会产生非法解,同时能够将父代个体中的优良基因传递到下一代,从而帮助改进解的质量和收敛速度。

观察蜂操作

  1. 蜜蜂觅食行为

    • 蜜蜂使用轮盘赌选择蜜源的位置,选择概率与蜜源的适应度值成正比。适应度值高的蜜源被选中的概率更大。
    • 选择概率的计算使用公式(10),其中fit_w是第w个解的适应度值,D是蜜源的数量,即种群数量的一半。
    • 蜜源的适应度值按照公式(12)计算,其中obj_w是蜜源w的目标值。
  2. 工序串优化

    • 采用变换步长策略对选择的蜜源位置附近进行搜索。大步长交换可行解中多对工序的顺序,增强全局搜索能力,避免陷入局部最优;小步长交换可行解中一对工序的顺序,适合在当前解空间进行更深一步的搜索。
    • 为了结合大步长和小步长的优势,设定了一个阈值,当搜索次数小于阈值时进行小步长搜索,反之进行大步长搜索,并在切换时将搜索次数清零。
    • 在计算适应度值时,采用贪婪策略选择适应度高的个体,以保留精英个体。
    • 对工序串进行插入变异时,从工序串中选择任意一道工序插入到工序串的任意位置,然后按照原有顺序排序,并计算适应度值。同样地,对机器串进行变异操作时,随机选择一道工序,在其可选机器集中随机选择一台机器进行变异,并计算适应度值。最后,采用贪婪策略选择适应度高的染色体保留到下一代种群中。

侦察蜂操作

在标准的ABC算法中,如果雇佣蜂在同一个蜜源上进行了limit次(即达到最大搜索次数)而没有改进,那么它就会转变为侦查蜂。在传统ABC算法中,每次只有一只雇佣蜂会被转变为侦查蜂,而侦查蜂生成的随机解对种群的改进影响较小,不利于算法跳出局部最优解。

因此,在这里提出了一种改进的方法:如果有Y个蜜源经过limit次搜索没有改进,那么就采用种群初始化方法(来自文中第2.2节)生成Y个新的蜜源。通过增加侦查蜂的数量,保持种群的多样性,这有助于提高算法的全局搜索能力。

具体来说,当Y个蜜源达到搜索次数上限时,会生成Y个新的蜜源,以增加算法的搜索空间,从而提高发现更好解的可能性,增强算法的全局搜索能力。

算法流程

  1. 建立柔性作业车间调度模型。
  2. 确定调度的约束条件。
  3. 初始化种群以及设置参数。
  4. 计算适应度值,雇佣蜂进行 IPOX 交叉和多点交叉操作。
  5. 计算各蜜源的适应度值,并且计算观察蜂选择跟随各雇佣蜂的概率。
  6. 观察蜂采用变步长搜索策略,并且进行变异操作。
  7. 判断蜜源是否达到最大搜索次数,若满足条件则雇佣蜂转换为侦查蜂,搜索新的蜜源,否则进入步骤 8。
  8. 判断算法是否达到最大迭代次数,如果是则算法结束;如果未达到最大迭代次数,则跳转到步骤 4。

在这里插入图片描述

结果

计算这个问题,设置了50轮的答案搜索,完工时间由大变小,体现出算法寻找最优解的变化,整体是收敛的。

在这里插入图片描述

从甘特图种可以看出6台机器如何分配才能达到最优最短的完工时间,比如可以看到机器M1的加工顺序是零件4、零件4、等等。总的完工时间花费是46。

在这里插入图片描述

程序截图

在这里插入图片描述
用python运行main.py后即可得到甘特图和结果图:

在这里插入图片描述

问询、帮助

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314460.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为什么有的晶圆厂叫特色工艺晶圆厂?

知识星球&#xff08;星球名&#xff1a; 芯片制造与封测社区&#xff09;里的学员问&#xff1a; 经常看看到某某晶圆厂是12英寸特色工艺晶圆厂&#xff0c;特色工艺是指什么&#xff1f; 芯片的种类&#xff1f; 芯片分为四大类:mems,IC,光电器件&#xff0c;分立器件。 …

web(微博发布案例)

示例&#xff1a; 1、检测空白内容 2、发布内容 html: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta …

科蓝尔环保 | 成都2024全国水科技大会暨技术装备成果展览会

2024年5月13日一15日中华环保联合会、福州大学、上海大学在四川省成都市联合举办“2024全国水科技大会暨技术装备成果展览会”。 大会主题&#xff1a;加快形成新质生产力 增强水业发展新动能 大会亮点&#xff1a;邀请6位院士&#xff0c;100余位行业专家&#xff0c;15场专…

Redis缓存问题:穿透,击穿,雪崩等

Redis缓存问题:穿透,击穿,雪崩等 在高并发场景下,数据库往往是最薄弱的环节,我们通常选择使用redis来进行缓存,以起到缓冲作用,来降低数据库的压力,但是一旦缓存出现问题,也会导致数据库瞬间压力过大甚至崩溃,从而导致整个系统崩溃.今天就聊聊常见的redis缓存问题. 缓存击穿 …

了解HTTP代理服务器:优势、分类及应用实践

在我们日常的网络使用中&#xff0c;我们经常听到HTTP代理服务器这个术语。那么&#xff0c;HTTP代理服务器到底是什么&#xff1f;它有什么优势和分类&#xff1f;又如何应用于实践中呢&#xff1f;让我们一起来了解一下。 HTTP代理服务器是一种位于客户端和服务器之间的中间…

qml和c++结合使用

目录 文章简介1. 创建qml工程2. 创建一个类和qml文件&#xff0c;修改main函数3. 函数说明&#xff1a;4. qml 文件间的调用5. 界面布局6. 代码举例 文章简介 初学qml用来记录qml的学习过程&#xff0c;方便后面归纳总结整理。 1. 创建qml工程 如下图&#xff0c;我使用的是…

数字IC后端先进工艺设计实现之TSMC 12nm 6Track工艺数字IC后端实现重点难点盘点

大家知道咱们社区近期TSMC 12nm ARM Cortexa-A72(1P9M 6Track Metal Stack)已经开班。这里小编要强调一点:不要认为跑了先进工艺的项目就会很有竞争力&#xff01;如果你仅仅是跑个先进工艺的flow&#xff0c;不懂先进工艺在数字IC后端实现上的不同点&#xff0c;为何有这样的不…

【笔记】应对Chrome更新导致Chromedriver失效的解决方案:Chrome For Test

随着网络应用和网站的不断发展&#xff0c;自动化测试变得越来越重要&#xff0c;而Selenium成为了许多开发者和测试人员的首选工具之一。然而&#xff0c;对于使用Selenium来进行网站测试的人来说&#xff0c;Chrome浏览器的频繁更新可能会成为一个头疼的问题。每当Chrome更新…

论文速览 | IEEE TIFS, 2021 | 对车载毫米波雷达的物理层攻击及其防御方法的研究

注1:本文系"计算成像最新论文速览"系列之一,致力于简洁清晰地介绍、解读非视距成像领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, SIGGRAPH, TPAMI; Light‑Science & Applications, Optica 等)。 本次介绍的论文是:<2…

iOS——NSCache

什么是NSCache NSCache是Foundation框架中的一个类&#xff0c;用于在iOS和macOS应用程序中进行临时性的内存缓存。它提供了一种轻量级的缓存机制&#xff0c;可以用于存储临时性的数据&#xff0c;例如图片、对象等。NSCache的主要特点和用法包括&#xff1a; 临时性缓存&…

汽车纵染压制专用液压机比例阀放大器

汽车纵染压制专用液压机比例阀放大器是一种专门用于汽车纵梁拉伸工艺的设备&#xff0c;它也可以用于其他金属薄板的压制成型及校正工艺。该类型的液压机通常具备独立的动力机构和电气系统&#xff0c;采用PLC技术进行控制&#xff0c;以确保操作的准确性和稳定性。除了纵梁拉伸…

openEuler-22.03安装redis6.2.7

前言&#xff1a;redis一开始是安装5.0.7&#xff0c;一直安装失败 gcc安装版本是 10.3.1 make报错 参考博客&#xff1a;https://blog.51cto.com/flyfish225/10596050 将redis版本换成 6.2.7 1、下载地址 https://download.redis.io/releases/redis-6.2.7.tar.gz 2、解压…

OpenHarmony硬件合成方案解析

本文档主要讲解在OpenHarmony中&#xff0c;硬件合成适配的方法及原理说明。 环境说明&#xff1a; OHOS版本&#xff1a;3.1-Release及以上 一、背景介绍 1.1 什么是合成 要理解什么是合成&#xff0c;合成做了什么&#xff1f;我们先通过分解设置界面来回答这个问题: 在…

删除二叉搜索树中的节点

题目链接 删除二叉搜索树中的节点 题目描述 注意点 节点值唯一root 是合法的二叉搜索树节点数的范围 [0, 10000] 解答思路 可以根据二叉搜索树的性质找到要删除的节点&#xff0c;关键是删除节点后怎么重新构建成一棵新的二叉搜索树首先要找到的是删除节点node的父节点nod…

数智时代的AI人才粮仓模型解读白皮书(2024版)

来源&#xff1a;极客邦科技 自 2023 年上半年起&#xff0c;ChatGPT 等大模型技术蓬勃发展&#xff0c;AI 技术不断突破边界&#xff0c;展现 出惊人的潜力和发展速度。从早期的逻辑推理、专家系统&#xff0c;到如今的深度学习、神经网络&#xff0c; AI 技术显著缩小了科学…

【webrtc】Chrome和Firefox在SDP协商过程中,针对localhost的不同处理

内网下chrome端webrtc协商失败 现象 我有一个webrtc服务器在局域网内&#xff0c;使用chrome浏览器访问时&#xff0c;发现webrtc在做媒体协商时失败。 具体表现是&#xff0c;在交换sdp后&#xff0c;ice的状态是oniceconnectionstatechange: failed 但是换成Firefox浏览器…

编写Spark独立应用程序

执行本文之前&#xff0c;先搭建好spark的开发环境&#xff0c;我目前只搭建了standalone模式&#xff0c;参考链接 &#xff1a; Spark Standalone模式部署-CSDN博客 1. 安装sbt 1&#xff09;下载sbt 网址&#xff1a;https://www.scala-sbt.org/download.html &#xff0c…

设计模式——终止模式之两阶段终止模式

文章目录 1. 错误思路2. 两阶段终止模式2.1 利用 isInterrupted2.2 利用停止标记interrupt-打断park Two Phase Termination 在一个线程 T1 中如何“优雅”终止线程 T2&#xff1f;这里的【优雅】指的是给 T2 一个料理后事的机会。 1. 错误思路 使用线程对象的 stop() 方法停…

论文解读-面向高效生成大语言模型服务:从算法到系统综述

一、简要介绍 在快速发展的人工智能&#xff08;AI&#xff09;领域中&#xff0c;生成式大型语言模型&#xff08;llm&#xff09;站在了最前沿&#xff0c;彻底改变了论文与数据交互的方式。然而&#xff0c;部署这些模型的计算强度和内存消耗在服务效率方面带来了重大挑战&a…

Xinlinx FPGA内的存储器BRAM全解

目录 一、总体概述1.7系列FPGA的BRAM特点2.资源情况 二、BRAM分类1.单端口RAM2.简单双端口RAM3.真双端口RAM 三、BRAM的读写1、Primitives Output Registers读操作注意事项2.三种写数据模式&#xff08;1&#xff09;Write_First&#xff08;2&#xff09;Read_First&#xff0…