python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2

Netron查看模型结构

    • 参照模型
    • 安装Netron
    • 写netron代码
    • 运行查看结果
    • 需要关注的地方

  • 2024年4月27日14:32:30----0.9.2

参照模型

以pytorch官网的tutorial为观察对象,链接是https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

模型代码如下

import torch.nn as nn
import torch.nn.functional as Fclass RNN(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.i2h = nn.Linear(input_size, hidden_size)self.h2h = nn.Linear(hidden_size, hidden_size)self.h2o = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=1)def forward(self, input, hidden):hidden = F.tanh(self.i2h(input) + self.h2h(hidden))output = self.h2o(hidden)output = self.softmax(output)return output, hiddendef initHidden(self):return torch.zeros(1, self.hidden_size)n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

安装Netron

pip install netron即可

其他安装方式参考链接
https://blog.csdn.net/m0_49963403/article/details/136242313

写netron代码

随便找一个地方打个点,如sample方法中

import netron
max_length = 20# Sample from a category and starting letter
def sample(category, start_letter='A'):with torch.no_grad():  # no need to track history in samplingcategory_tensor = categoryTensor(category)input = inputTensor(start_letter)hidden = rnn.initHidden()output_name = start_letterfor i in range(max_length):
#             print("category_tensor",category_tensor.size())
#             print("input[0]",input[0].size())
#             print("hidden",hidden.size())output, hidden = rnn(category_tensor, input[0], hidden)torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件netron.start('AlexNet1.onnx') #展示结构图break
#             print("output",output.size())
#             print("hidden",hidden.size())
#             print("====================")topv, topi = output.topk(1)topi = topi[0][0]if topi == n_letters - 1:breakelse:letter = all_letters[topi]output_name += letterinput = inputTensor(letter)return output_name# Get multiple samples from one category and multiple starting letters
def samples(category, start_letters='ABC'):for start_letter in start_letters:print(sample(category, start_letter))breaksamples('Russian', 'RUS')

运行查看结果

结果是在浏览器中,运行成功后会显示:
Serving ‘AlexNet.onnx’ at http://localhost:8080

打开这个网页就可以看见模型结构,如下图

在这里插入图片描述

需要关注的地方

  1. 关于参数
    如果模型是一个参数的情况下,如下使用就可以了
import torch
from torchvision.models import AlexNet
import netron
model = AlexNet()
input = torch.ones((1,3,224,224))
torch.onnx.export(model, input, f='AlexNet.onnx')
netron.start('AlexNet.onnx')

如果模型有多个参数的情况下,则需要如下用括号括起来,如本文中的例子

torch.onnx.export(rnn,(category_tensor, input[0], hidden) , f='AlexNet1.onnx')   #导出 .onnx 文件
netron.start('AlexNet1.onnx') #展示结构图
  1. 如果运行过程中发现报错找不到模型
    有可能是你手动删除了生成的模型,最好的方法是重新生成这个模型,再运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数码摄影色彩构成,数码相机色彩管理

一、资料描述 本套摄影色彩资料,大小58.54M,共有6个文件。 二、资料目录 《抽象彩色摄影集》.阿瑟.pdf 《色彩构成》.pdf 《色彩学》.星云.扫描版.pdf 《摄影色彩构成》.pdf 《数码相机色彩管理》.pdf 数码摄影进阶之4《色彩篇》.pdf 三、资料下…

Qt 把.exe打包成安装文件形式

目录 1.下载工具 Qt Installer Framework2.将bin文件添加到环境变量3.拷贝startmenu示例-备用4.准备Qt Release打包好的程序5.把Release打包好的程序放到packages\org.qtproject.ifw.example\data文件夹下6.生成安装包7.修改安装包图标8.修改主程序程序安装引导-创建快捷键9.添…

FFmpeg下载教程(Windows版)

文章目录 下载地址步骤 下载地址 https://ffmpeg.org/download.html 步骤

win c++使用lua环境配置 5.3.5版本

编译lua 下载lua源码,github仓库 使用vs编译源码,新建一个静态库项目(只会生成lib文件),想要dll的话就新建dll项目(有一个lib文件和dll文件) 把lua源码下面的文件夹都是,复制到vs项目中 lib目录是我手动…

iOS - 多线程-读写安全

文章目录 iOS - 多线程-读写安全1. 多读单写1.1 场景1.2 实现方案1.2.1 pthread_rwlock:读写锁1.2.1.1 示例 1.2.2 dispatch_barrier_async:异步栅栏调用1.2.2.1 示例 iOS - 多线程-读写安全 假设有一个文件,A线程进行读取操作,B…

牛客社区帖子分页显示实现

下图是前端分页的组件: 下面是对应的静态html页面,每一个方块,都是一个a标签,可以点击,执行的链接是/community/index,GET请求,拼接的参数是current,也就是pageNum,只需…

ACE框架学习3

ACE Acceptor-Connector框架 该框架实现 Acceptor-Connector 模式,该模式解除了“网络化应用中的协作对端服务的连接和初始化”与“连接和初始化之后它们所执行的处理”的耦合。Acceptor-Connector 框架允许成用独立于它们所提供的服务来配置其连接布局的关键属性。…

【idea】idea 中 git 分支多个提交合并一个提交到新的分支

一、方法原理讲解 我们在 dev 分支对不同的代码文件做了多次提交。现在我们想要把这些提交都合并到 test 分支。首先我们要明白四个 git 操作, commit:命令用于将你的代码变更保存到本地代码仓库中,它创建了一个新的提交(commit…

ubuntu 复制文件路径

前言 我打算搞一个ubuntu右键复制文件路径的插件,但是找不到,只能平替 这个配置,可以把文件拖拽到cmd窗口,然后就直接cmd输出文件路径 配置 cd ~ vim .bashrc 在文件结尾添加 cdd () { ddirname "$1"; echo …

通过filebeat实现对docker服务的通用日志收集

平台 依赖 linux docker docker-compose 或者 docker compose 镜像 docker.elastic.co/beats/filebeat:8.12.2 docker.elastic.co/beats/kibana:8.12.2 docker.elastic.co/beats/elasticsearch:8.12.2 正文 背景 对于有自建机房的公司来说,如果公司的运维技术…

应用实战 | 别踩白块小游戏,邀请大家来PK挑战~

“踩白块会输”是一个简单的微信小程序游戏,灵感来自当年火热的别踩白块游戏,程序内分成三个模块:手残模式、经典模式和极速模式,分别对应由易到难的三种玩法,可以查看游戏排名。动画效果采用JS实现,小程序…

opencv可视化图片-----c++

可视化图片 #include <opencv2/opencv.hpp> #include <opencv2/core.hpp> #include <filesystem>// 将数据类型转换为字符串 std::string opencvTool::type2str(int type) {std::string r;uchar depth type & CV_MAT_DEPTH_MASK;uchar chans 1 (typ…

java开发之路——用户管理中心_简单初始化

用户管理中心_简单初始化 (一) 初始化项目1. 使用 Ant Design Pro(现成的管理系统) 进行前端初始化2. 后端初始化三种初始化java项目 (二) 遇到的问题【问题1】Ant design pro页面打不开&#xff0c;一直在budiling控制台出现错误error-./src/components/index.ts【问题2】初始…

数据结构和算法:贪心

贪心算法 贪心算法是一种常见的解决优化问题的算法&#xff0c;其基本思想是在问题的每个决策阶段&#xff0c;都选择当前看起来最优的选择&#xff0c;即贪心地做出局部最优的决策&#xff0c;以期获得全局最优解。 贪心算法和动态规划都常用于解决优化问题。它们之间存在一…

51.HarmonyOS鸿蒙系统 App(ArkUI)通知

普通文本通知测试 长文本通知测试 多行文本通知测试 图片通知测试 进度条通知测试 通知简介 应用可以通过通知接口发送通知消息&#xff0c;终端用户可以通过通知栏查看通知内容&#xff0c;也可以点击通知来打开应用。 通知常见的使用场景&#xff1a; 显示接收到的短消息、…

GPT-3.5 Turbo 的 temperature 设置为 0 就是贪婪解码?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 将 GPT-3.5 Turbo 的 temperature 设置为 0 通常意味着采用贪婪解码&#xff08;greedy decoding&#xff09;策略。在贪婪解码中&#xff0c;模型在每一步生成文本时选择概率最高的词元&#xff0c;从…

Leetcode—1672. 最富有客户的资产总量【简单】

2024每日刷题&#xff08;120&#xff09; Leetcode—1672. 最富有客户的资产总量 实现代码 class Solution { public:int maximumWealth(vector<vector<int>>& accounts) {int ans 0;for(vector<vector<int>>::iterator it accounts.begin();…

SEGGER Embedded Studio IDE移植FreeRTOS

SEGGER Embedded Studio IDE移植FreeRTOS 一、简介二、技术路线2.1 获取FreeRTOS源码2.2 将必要的文件复制到工程中2.2.1 移植C文件2.2.2 移植portable文件2.2.3 移植头文件 2.3 创建FreeRTOSConfig.h并进行配置2.3.1 处理中断优先级2.3.2 configASSERT( x )的处理2.3.3 关于系…

PostgreSQL 14 向量相似度搜索插件 (pgvector) 安装指南

本文是关于在 PostgreSQL 14 中安装并使用向量相似度搜索插件(pgvector)的详细指南。此插件允许用户在数据库中执行高效的向量运算,特别适用于机器学习模型的向量数据存储与检索场景。 环境需求 已安装PostgreSQL 14或更高版本。安装了Visual Studio 2022,用于编译插件。安装…

CentOS命令大全:掌握关键命令及其精妙用法!

CentOS是一种流行的开源企业级Linux发行版&#xff0c;它基于Red Hat Enterprise Linux (RHEL)的源代码构建。对于系统管理员和运维工程师来说&#xff0c;掌握CentOS的常用命令至关重要。 这些命令不仅可以帮助管理服务器&#xff0c;还可以进行故障排查、性能监控和安全加固等…