【网络原理】TCP协议的连接管理机制(三次握手和四次挥手)

系列文章目录

【网络通信基础】网络中的常见基本概念

【网络编程】网络编程中的基本概念及Java实现UDP、TCP客户端服务器程序(万字博文)

【网络原理】UDP协议的报文结构 及 校验和字段的错误检测机制(CRC算法、MD5算法)

【网络原理】TCP协议的相关机制(确认应答、超时重传)


文章目录

前言

一、建立连接(三次握手)

建立连接(三次握手)的意义

1)投石问路,确认当前通信路径是否畅通

2)验证通信双方,发送能力和接收能力是否正常

3)三次握手的过程中,通信双方也会协商一些必要的参数

二、断开连接(四次挥手)

三、连接管理过程中涉及到的TCP状态转换


前言

接上文,我们介绍了TCP协议中,保证可靠性传输的核心机制,确认应答和超时重传机制。

TCP协议的连接管理机制,是整个网络原理中,最高频的问题,没有之一!因此,这里单独用一篇博客,详细介绍TCP协议的连接管理机制。

TCP协议的连接管理机制主要包括三次握手建立连接四次挥手断开连接


一、建立连接(三次握手)

在前面的文章中,我们写过TCP回显客户端和服务器程序。

当客户端执行 clientSocket = new Socket(serverIp, serverPort); 这个操作的时候,就是在建立连接。此处只是调用了 socket API,真正连接建立的过程,是由TCP协议完成的。

TCP协议建立连接的这个过程,就称为“三次握手”。

这里谈到的连接,是“虚拟的,抽象的”连接。目的是让通信双方都能保存对方的相关信息。

此处又涉及到六位标志位的其中一位=>SYN,代表同步(synchronize)。所谓的SYN,是一个特殊的,带有SYN标志位的TCP数据包:

  1. 没有载荷,不带有应用层的数据.
  2. 六位标志位的第五位,将该位设置为1.

虽然SYN数据包不带有载荷,但是SYN数据包会包含IP报头(如果在IP网络中传输)或以太网数据帧帧头(如果在以太网中传输),以及TCP报头。这些头部包含了一些必要的信息,比如源IP地址、目标IP地址、源端口、目标端口等。这个过程,也是客户端在告诉服务器,我是谁。

了解了SYN数据包后,再来看下三次握手的大致过程。首先要清楚,客户端是主动的一方,第一次交互,一定有客户端主动发起的:

上图过程中,是有四次交互,简单来说:

  1. 客户端先向服务器发送SYN请求
  2. 服务器回复客户端一个ACK应答报文
  3. 服务器再给客户端发送一个SYN请求
  4. 客户端回复服务器一个ACK应答报文

这个建立连接的过程,本质上就是通信双方各自给对方发起一个SYN,各自给对方回应一个ACK。但实际上,中间的两次交互(2和3),是能够合二为一的。

因为回复一个带ACK标志位的数据包,再回复一个带SYN标志位的数据包,可以合并成一个数据包,这个数据包同时带有ACK标志位和SYN标志位。即第2位(ACK)和第5位(SYN)都为1.

此时这个数据包就同时起到了两个作用,既能应答上个请求,也能发起SYN。

这么做的原因是:网络传输过程中要涉及到多次的封装和分用,两个包合并成一个包,就可以减少一次封装分用的过程,整体的效率就提升了。

经过合并,四次交互也就变成了三次,也就形成了“三次握手”


因此,三次握手的具体过程如下:

  1. 客户端向服务器发送SYN请求: 客户端首先向服务器发送一个带有SYN标志位的数据包,其中包含了客户端的初始序列号(ISN)。

  2. 服务器发送SYN-ACK响应: 服务器收到客户端的SYN请求后,会回复一个带有SYN和ACK标志位的数据包,称为SYN-ACK响应。这个响应中,服务器确认了客户端的SYN请求,并指定了服务器的初始序列号(ISN)。

  3. 客户端发送ACK确认: 最后,客户端收到服务器的SYN-ACK响应后,会发送一个带有ACK标志位的数据包,表示确认了服务器的响应。这个ACK数据包中,客户端会确认收到了服务器的SYN响应,并指定了下一个要发送的序列号。

至此,三次握手完成,TCP连接建立成功,双方可以开始进行数据传输了。

前面给出的都是简图,更适合我们在面试过程中给出,因为更稳,要是画详图,画错了,那就得不偿失了。以下是三次握手的详图:

再通俗地解释一下三次握手的过程:

  1. 客户端向服务器发起建立连接的请求,发送一个SYN,此处的SYN就表示:我想跟你建立连接.
  2. 服务器大概率是会同意请求的(除非客户端太多了,负载极高,服务器无法响应),服务器收到SYN之后,会返回ACK(确认应答),表示收到!同时,服务器还会返回SYN,这个SYN的意思就是,我接受你的连接.
  3. 最后,客户端再给服务器返回一个ACK,表示:我也知道你同意我的请求了.

建立连接(三次握手)的意义

1)投石问路,确认当前通信路径是否畅通

例如地铁,每天早上会空车跑一趟,就是为了验证,这个路线是否畅通,是否存在一些问题。

因此,三次握手,对于可靠传输也是有意义的,但是相对于确认应答以及超时重传,起到的作用就稍逊一筹了。

2)验证通信双方,发送能力和接收能力是否正常

比如,张三和李四要开黑打游戏了。通常,在组队队伍的时候,双方都不知道自己的麦克风和听筒是否能正常工作,都先进行确认,这个过程其实就是三次握手,如下图:

上图中,张三扮演的就是客户端的角色,李四扮演服务器的角色。经过上述过程,张三和李四就够确认各自的麦克风和听筒都能正常工作了。此处,麦克风就对应发送能力,听筒就对应接收能力。

理解了上述图中的过程,我们就能清晰地理解,为什么是三次握手,而不是两次或四次握手:

  • 四次握手显然是可以的,但是没必要。
  • 如果是两次,一定是不行的。因为两次握手,李四(服务器)这边无法确认自己的发送能力是否正常,也无法确认张三(客户端)的接收能力是否正常。

3)三次握手的过程中,通信双方也会协商一些必要的参数

这些参数往往是以“选项”部分来体现的,前面说过,选项的范围是0~40字节。

其中有一个参数是很关键的,即TCP通信的序号:

  • 客户端在发送SYN报文时会包含一个随机生成的序列号(ISN),用于标识客户端发送数据的起始位置。
  • 服务器在回复ACK报文时会确认客户端的序列号,并生成自己的序列号(SSN),用于标识服务器发送数据的起始位置。

这样设计的原因,是为了避免出现一个情况,“前朝的剑,斩本朝的官”。具体过程如下:

  • 第一次连接的过程中,客户端传输的一个数据包,在路上堵车了,迟迟没有发送到对端。
  • 等到到了对端的时候,此时已经不是第一次连接了,而是新的连接了。
  • 此时,这份数据就应该被丢弃。
  • 由于,数据包是按照 IP + 端口号,来识别对端的。
  • 如果恰好出现,两次连接在同一台主机,都是同一个端口号的情况(这种情况是客户端的概率比较低,但服务器概率就比较大了),此时,再要处理这份数据就不合适了。

要解决这一问题,就是通过序号来区分当前数据是否是本次连接的数据。如果是,才进行处理,否则,就丢弃该数据。

二、断开连接(四次挥手)

连接,本质上就是让通信双方保存对方的信息。每个客户端/服务器,都要保存很多的对端信息。

信息一旦多了,就要用到数据结构。断开连接的本质目的,就是把对端的信息,从数据结构中删除/释放掉。

此处谈到的“四次挥手”,指的是谈恋爱中“和平分手”的这种情况。而单方面分手的情况,四次挥手不一定适用,这里会有其他方式来断开连接,因此,不意味着断开连接一定是四次挥手。

此处,又要介绍一个标志位,FIN,FIN => finish(结束)。即六位标志位中的第六位,用于请求关闭连接。

与三次握手不同的是,四次挥手,不一定非得是客户端先发FIN,服务器也可能先发FIN。

  • 调用socket.close(),会触发FIN
  • 进程直接结束,也会触发FIN

四次挥手的过程简图如下(客户端先发起关闭连接请求):

从上图可以看出,四次握手就是通信双方各自给对方发一个FIN,且各自给对方反馈一个ACK。

而且,这里的过程和刚开始的“四次握手”的过程非常相似。那四次挥手能否像三次握手一样,将中间的两次交互(ACK和FIN)合二为一呢?

  • 在标准的TCP四次挥手过程中,ACK和FIN通常是分开发送的。
  • 然而,在某些情况下,确实可能会发生ACK和FIN合并发送的情况,因为在理论上,ACK和FIN可以在同一数据包中发送。这种情况主要依赖于延迟应答和捎带应答机制(后面再说)。

如果实际通信过程中,ACK和第二个FIN时间间隔比较长,此时就无法进行合并了。以下是四次挥手的详图:

三、连接管理过程中涉及到的TCP状态转换

在前面三次握手和四次挥手的详图中,每进行一次握手或挥手,图中都有一个对应的状态。

TCP状态和之前多线程中谈到的“线程”状态,是类似的概念。TCP会根据收到的数据包以及协议规定的状态转换规则来更新连接状态:

  1. 分析收到的数据包: TCP协议栈会分析收到的数据包的头部信息,包括源端口、目标端口、标志位等,以确定数据包所处的状态以及下一步的操作。

  2. 执行状态转换规则: TCP协议定义了一系列状态转换规则,规定了在收到不同类型的数据包时应该如何更新连接状态。根据这些规则,TCP协议栈会根据收到的数据包来进行状态转换。

根据这些状态,TCP就能确定当前应该干什么,对于确保网络通信的可靠性和有效性至关重要。

这个图看起来非常复杂,实际上也真的很复杂,但是只需要关注几个比较重要的状态即可。 

先来看三次握手中比较重要的状态:

客户端还未发起SYN前,服务器处于LISTEN状态,表示服务器这边创建好 serverSocket 了,并且绑定端口号完成(手机开机了,信号良好,随时可以接听电话)

运行之前写的TCP回显服务器程序,通过命令行输入 netstat -ano | findstr 9090  这条命令(在这个命令中,netstat -ano 的作用是显示所有网络连接及其相关的进程ID(PID),而 findstr 9090 则是在输出包含端口号9090的所有进程),查看当前的状态:

ESTABLISHED 已确立的。表示客户端和服务器连接已经建立完毕(有人给我打电话,我接通了,此时我们就可以聊天了)

运行之前写的TCP回显客户端程序(可以运行多次),再次通过这个命令查看当前状态:

此处由于客户端和服务器在同一个机器上运行,因此客户端和服务器都会查出来。

再看四次挥手中比较重要的状态:

谁被动断开连接,谁进入 CLOSE_WAIT 状态。这个状态表示:

  • 接收方已被通知对方不再发送数据,但它仍然可以发送数据给对方。接收方需要执行应用层的关闭操作,并发送一个FIN包来关闭剩余的方向,即关闭对发起方的数据传输。 

CLOSE_WAIT 状态不太容易观察到,代码中会比较快速地关闭socket,这个时候,状态就已经从 CLOSE_WAIT -> LAST_ACK 了。但是如果服务器/客户端出现大量 CLOSE_WAIT  意味着代码可能出现bug了,比如忘记关闭 socket。

谁主动断开连接,谁进入 TIME_WAIT 状态:

  • 表示本端给对端发起FIN之后,对端也给我发FIN了,此时本端进入 TIME_WAIT 状态。这给最后一个ACK的重传留有一定的时间。

TIME_WAIT 状态在Windows上也不太容易观察。它存在的意义,主要是防止最后一个ACK丢失。具体的:

  • 在四次挥手的过程中,会涉及到确认应答和超时重传,如果没有收到ACK就视为丢包,此时就会重传FIN。
  • 进入TIME_WAIT 状态的这一方,如果在重传FIN这个环节,把TCP连接关闭了,保存的对端信息也随之释放了。此时意味着重传FIN的这一方就无法被返回ACK了。

此处 TIME_WAIT 也不是无休止的等待,通常等2MSL(MSL是TCP协议中的一个参数,表示数据段在网络中的最大存活时间,通常以秒为单位。MSL的值取决于具体的实现和环境,但通常为30秒到2分钟之间)

进入TIME_WAIT 状态的这一方等这么长时间,如果对方还没有重传,就说明不会再重传了。同时也确保了对方收到了最后的ACK确认。

至此,TCP协议的连接管理机制就介绍完了,并且前面还介绍了确认应答和超时重传机制,这三个机制都是保证TCP协议可靠传输的重要机制。连接管理机制总结如下:

三次握手(Three-way Handshake):

  1. 第一步(Client -> Server): 客户端发送一个带有SYN标志的数据包给服务器,表示请求建立连接,并选择一个初始序列号(ISN)。
  2. 第二步(Server -> Client): 服务器收到客户端的SYN包后,回复一个带有SYN和ACK标志的数据包给客户端,表示同意建立连接,并确认客户端的ISN,同时选择自己的ISN。
  3. 第三步(Client -> Server): 客户端收到服务器的确认后,再次发送一个带有ACK标志的数据包给服务器,确认服务器的ISN。此时,连接已建立,双方可以开始传输数据。

四次挥手(Four-way Handshake):

  1. 第一步(Client -> Server): 客户端发送一个带有FIN标志的数据包给服务器,表示不再发送数据,但仍可以接收数据。
  2. 第二步(Server -> Client): 服务器收到客户端的FIN包后,回复一个带有ACK标志的数据包给客户端,确认收到了关闭请求。
  3. 第三步(Server -> Client): 服务器发送一个带有FIN标志的数据包给客户端,表示服务器也不再发送数据,但仍可以接收数据。
  4. 第四步(Client -> Server): 客户端收到服务器的关闭请求后,回复一个带有ACK标志的数据包给服务器,确认收到了关闭请求。此时,连接终止。

通过三次握手,客户端和服务器建立起了可靠的连接;而通过四次挥手,双方安全地终止了连接,确保数据的可靠传输。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/315612.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

扭蛋机小程序带来了什么优势?扭蛋机收益攻略

在当下的潮流消费时代,人们对潮玩也日益个性化,扭蛋机作为一种新型的娱乐消费模式,深受大众喜爱。扭蛋机的价格低,各个年龄层的玩家都可以进行购买,潜在玩家量非常大。扭蛋机商品主打热门IP周边等,种类繁多…

大型零售企业,适合什么样的企业邮箱大文件解决方案?

大型零售企业通常指的是在全球或特定地区内具有显著市场影响力和知名度的零售商。这些企业不仅在零售业务收入上达到了惊人的规模,而且在全球范围内拥有广泛的销售网络和实体店铺。它们在快速变化的零售行业中持续创新,通过实体店、电商平台等多种渠道吸…

第十一章 Spring Boot 整合 WebSocket

第十一章 Spring Boot 整合 WebSocket 1. 为什么需要 WebSocket2. WebSocket 简介3. Spring Boot 整合 WebSocket3.1 实现消息群发1. 依赖2. 配置 WebSocket ************************************************************ 1. 为什么需要 WebSocket 2. WebSocket 简介 3. Spri…

QT支持多种开发语言

QT主要是一个C应用程序框架,但它也提供了对其他一些编程语言的官方或非官方支持。以下是QT支持的一些语言版本及其特点。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.Python (PyQt) : PyQt是QT的官方Pyth…

axios.get请求 重复键问题??

封装的接口方法: 数据: 多选框多选后 能得到对应的数组 但是请求的载荷却是这样的,导致会请求不到数据 departmentChecks 的格式看起来是一个数组,但是通常 HTTP 请求的查询参数不支持使用相同的键(key)名多次。如…

【Redis 开发】Redis哨兵

哨兵 作用和原理服务状态监控选举新的master 搭建哨兵集群RedisTemplate的哨兵模式 作用和原理 Redis提供了哨兵机制来实现主从集群中的自动故障恢复: 哨兵也是一个集群 监控:会不断检查master和slave是否按预期工作自动故障恢复:如果mast…

本地生活服务平台有哪些?哪个靠谱?

随着多家互联网大厂的本地生活服务布局日益展开,不少人都看到了其中的巨大市场缺口和广阔前景,想要入驻本地生活服务平台,瓜分这块巨大的蛋糕。而在当下这个选择大于努力的时代,能否分到蛋糕以及分到多少蛋糕的关键,就…

Vast+产品展厅 | Vastbase G100数据库是什么架构?(2)

Vastbase G100是海量数据融合了多年对各行业应用场景的深入理解,基于openGauss内核开发的企业级关系型数据库。 上一期,《Vast产品展厅》为您介绍了Vastbase G100的部署架构和物理架构。 本期,我们将为您详细讲解Vastbase G100的物理架构和…

基于Python实现心脏病数据可视化DEA+预测【500010103.1】

一、数据说明 该心脏病数据集是通过组合 5 个已经独立可用但以前未合并的流行心脏病数据集来策划的。在这个数据集中,5 个心脏数据集结合了 11 个共同特征,使其成为迄今为止可用于研究目的的最大心脏病数据集。 该数据集由 1190 个实例和 11 个特征组成…

PVE虚拟机隐藏状态栏虚拟设备

虚拟机启动后,状态栏会出现一些虚拟设备,点击弹出会导致虚拟机无法使用。 解决方案: 1、在桌面新建disable_virtio_removale.bat文件,内容如下: ECHO OFF FOR /f %%A IN (reg query "HKLM\SYSTEM\CurrentContro…

低代码+定制物资管理:创新解决方案探析

引言 在当今快速变化的商业环境中,企业面临着不断增长的挑战,如提高效率、降低成本、满足客户需求等。为了应对这些挑战,企业需要不断创新并采用先进的技术解决方案。在这样的背景下,低代码开发和定制化物资管理成为了引领企业变…

Spark-机器学习(7)分类学习之决策树

在之前的文章中,我们学习了分类学习之支持向量机,并带来简单案例,学习用法。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。…

selenium在Pycharm中结合python的基本使用、交互、无界面访问

下载 下载与浏览器匹配的浏览器驱动文件,这里一定注意的是,要选择和浏览器版本号相同的驱动程序,否则后面会有很多问题。 (1)浏览器(以google为例)版本号的查询: 我这里的版本号是1…

MySQL数据库安装——zip压缩包形式

安装压缩包zip形式的 MySQL 8数据库 一 、先进入官网下载 https://dev.mysql.com/downloads/mysql/ 二、解压到某个文件夹 我解压到了D:\mysql\mysql8 下面 然后在这个文件夹下手动创建 my.ini 文件和 data 文件夹 my.ini 内容如下: 注意 basedir 和 datadi…

vue做导入导出excel文档

系统中经常会遇到要实现批量导入/导出数据的功能,导入就需要先下载一个模板,然后在模板文件中填写内容,最后导入模板,导出就可能是下载一个excel文件。 1、导出 新建一个export.js文件如下: import {MessageBox,Mes…

文件摆渡:安全、高效的摆渡系统助力提升效率

很多组织和企业都会通过网络隔离的方式来保护内部的数据,网络隔离可以是物理隔离,也可以是逻辑隔离,如使用防火墙、VPN、DMZ等技术手段来实现,隔离之后还会去寻找文件摆渡方式,来保障日常的业务和经营需求。 进行网络隔…

线上社交app的搭建,圈子社交系统,小程序+app+H5三端,源码交付,支持二开!

在科技飞速发展的大背景下,年轻人社交不再局限于面对面,线上社交app已深入各大年轻人的手机中。相比于传统交友方式,线上社交app为用户提供了更加新奇的交友体验。同时,它还可以吸引更多的朋友,提高用户的整体交友体验…

Spring Boot整合Redisson的两种方式

项目场景 Spring Boot整合Redisson的两种方式,方式一直接使用yml配置,方式二创建RedissonConfig配置类。 前言 redisson和redis区别: Redis是一个开源的内存数据库,支持多种数据类型,如字符串、哈希、列表、集合和有序…

python-pytorch 如何使用python库Netron查看模型结构(以pytorch官网模型为例)0.9.2

Netron查看模型结构 参照模型安装Netron写netron代码运行查看结果需要关注的地方 2024年4月27日14:32:30----0.9.2 参照模型 以pytorch官网的tutorial为观察对象,链接是https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 模型代…

数码摄影色彩构成,数码相机色彩管理

一、资料描述 本套摄影色彩资料,大小58.54M,共有6个文件。 二、资料目录 《抽象彩色摄影集》.阿瑟.pdf 《色彩构成》.pdf 《色彩学》.星云.扫描版.pdf 《摄影色彩构成》.pdf 《数码相机色彩管理》.pdf 数码摄影进阶之4《色彩篇》.pdf 三、资料下…