使用 scikit-learn 进行机器学习的基本原理-2

介绍 scikit-learn 估计器对象

每个算法都通过“Estimator”对象在 scikit-learn 中公开。 例如,线性回归是:sklearn.linear_model.LinearRegression

 估计器参数:估计器的所有参数都可以在实例化时设置:

 拟合数据

让我们用 numpy 创建一些简单的数据:

 估计参数:当数据与估计器拟合时,根据手头的数据估计参数。 所有估计参数都是估计器对象的属性,以下划线结尾:

 监督学习:分类和回归

在监督学习中,我们有一个由特征和标签组成的数据集。 任务是构建一个估计器,能够在给定特征集的情况下预测对象的标签。 一个相对简单的例子是根据一组鸢尾花的测量值来预测鸢尾花的种类。 这是一个相对简单的任务。

一些更复杂的例子是: 通过望远镜给出一个物体的多色图像,确定该物体是恒星、类星体还是星系。

给出一个人的照片,识别照片中的人。

给定一个人看过的电影列表以及他们对电影的个人评分,推荐他们想要的电影列表(所谓的推荐系统:一个著名的例子是Netflix 奖)。

提示:这些任务的共同点是,存在一个或多个与对象相关的未知量,需要根据其他观测到的量来确定。

监督学习进一步分为两类:分类和回归。

在分类中,标签是离散的,而在回归中,标签是连续的。 例如,在天文学中,确定一个物体是恒星、星系还是类星体的任务是一个分类问题:标签来自三个不同的类别。 另一方面,我们可能希望根据这样的观察来估计对象的年龄:这将是一个回归问题,因为标签(年龄)是一个连续量。

分类:K 最近邻 (kNN) 是最简单的学习策略之一:给定一个新的未知观察,在参考数据库中查找哪些具有最接近的特征并分配主要类别。 让我们尝试一下分类问题:

 

 Scikit-learn估计器接口概述

Scikit-learn致力于在所有方法中提供统一的接口,我们将在下面看到这些示例。给定一个名为model的scikit-learn估计器对象,可以使用以下方法:

model.fit():拟合训练数据。对于监督学习应用程序,它接受两个参数:数据X和标签y(例如model.fit(X,y))。对于无监督学习应用程序,它只接受一个参数,即数据X(例如model.fit(X))。

 model.predict():给定一个训练好的模型,预测一组新数据的标签。该方法接受一个参数,即新数据X_new(例如model。predict(X_new)),并返回数组中每个对象的学习标签。model.predict_proba():对于分类问题,一些估计器也提供了这种方法,它返回新观测具有每个分类标签的概率。在这种情况下,具有最高概率的标签由model.predict()返回。

 model.score():对于分类或回归问题,大多数估计器实现评分方法。分数介于0和1之间,分数越大表示拟合度越好。model.transform():给定一个无监督模型,将新数据转换为新的基。这也接受一个参数X_new,并返回基于无监督模型的数据的新表示。

model.fit_transform():一些估计器实现了这种方法,它可以更有效地对相同的输入数据执行拟合和变换。

正规化:它是什么以及为什么它是必要的

简单的模型

训练误差

假设您正在使用1-最近邻估计量。你希望你的火车上有多少错误?·训练集误差不是预测性能的良好衡量标准。你需要去掉一个测试集。·一般来说,我们应该接受火车上的错误。

正则化的一个例子

正则化背后的核心思想是,对于“更简单”的某种定义,我们将更喜欢更简单的模型,即使它们会导致训练集上更多的错误。作为一个例子,让我们生成一个9阶多项式,带噪声:现在,让我们将一个4阶和一个9阶多项式拟合到数据中。用你的肉眼,你更喜欢哪种型号,四阶的还是九阶的?让我们看看地面真相:

提示:正则化在机器学习中无处不在。大多数scikit-learn估计器都有一个参数来调整正则化的数量。例如,对于k-NN,它是“k”,即用于做出决策的最近邻居的数量。k=1相当于没有正则化:训练集上的0错误,而大k将在特征空间中推向更平滑的决策边界。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/316908.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能体可靠性的革命性提升,揭秘知识工程领域的参考架构新篇章

引言:知识工程的演变与重要性 知识工程(Knowledge Engineering,KE)是一个涉及激发、捕获、概念化和形式化知识以用于信息系统的过程。自计算机科学和人工智能(AI)历史以来,知识工程的工作流程因…

【酱浦菌-爬虫技术细节】解决学术堂爬虫翻页(下一页)问题

首先我们通过css选择器获取页码信息,这里的css选择器,选择的是含有a标签的所有li标签,代码如下: li html_web.css(div.pd_c_xslb_left_fenye ul li>a) for li in li:li_url li.css(a::attr(href)).get()li_num li.css(a::t…

vue2迁移到vue3,v-model的调整

项目从vue2迁移到vue3,v-model不能再使用了,需要如何调整? 下面只提示变化最小的迁移,不赘述vue2和vue3中的常规写法。 vue2迁移到vue3,往往不想去调整之前的代码,以下就使用改动较小的方案进行调整。 I…

口袋实验室--使用AD2学习频谱参数测试

目录 1. 简介 2. 频谱相关参数 2.1 频谱相关基本概念 2.1.1 采样时间间隔 2.1.2 采样频率 2.1.3 采样点数 2.1.4 采样时间长度 2.1.5 谱线数 2.1.6 奈奎斯特频率 2.1.7 频谱分辨率 2.1.8 最高分析频率 2.1.9 频谱泄露 2.2 窗函数 2.2.1 AD2的窗函数 2.2.2 测试矩…

Python来计算 1,2,3,4 能组成多少个不相同且不重复的三位数?

我们今天的例子是 有 1,2,3,4 四个数字,它们能组成多省个互不相同且无重复的三位数?都分别是多少? 话不多说,我们先上代码 num 0 # 我们写了三个for循环,表示生成的三位数 for i…

【韩国】UE5的MetaHuman确实可以导入Blender进行编辑。

UE5的MetaHuman确实可以导入Blender进行编辑。根据网络上的信息,你可以将MetaHuman模型导出为FBX文件,然后在Blender中进行修改。修改完成后,你可以将其重新导入到Unreal Engine 5中4。请注意,当你在Blender中编辑模型时&#xff…

六天以太坊去中心化租房平台,前端+合约源码

六天以太坊去中心化租房平台 概述项目结构合约部署运行项目功能介绍一、首页二、房东后台我的房屋我的订单上架新房屋 三、租户后台我的房屋我的订单 四、仲裁后台 下载地址 概述 六天区块链房屋租赁系统,采用去中心化的方式实现了房屋的租赁功能。房东可在平台上托…

深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现

深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现 MobileNetV4 - Universal Models for the Mobile Ecosystem PDF: https://arxiv.org/pdf/2404.10518.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: ht…

视频怎么批量压缩?5个好用的电脑软件和在线网站

视频怎么批量压缩?有时候我们需要批量压缩视频来节省存储空间,便于管理文件和空间,快速的传输发送给他人。有些快捷的视频压缩工具却只支持单个视频导入,非常影响压缩效率,那么今天就向大家从软件和在线网站2个角度介绍…

Python 数据可视化 boxplot

Python 数据可视化 boxplot import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns# 读取 TSV 文件 df pd.read_csv(result.tsv, sep\t)normal_df df[df["sample_name"].str.contains("normal")] tumor_df df…

Transformers 自然语言处理(二)

原文:zh.annas-archive.org/md5/a1e65552fc41f3b5a667f63d9bed854c 译者:飞龙 协议:CC BY-NC-SA 4.0 第四章:从头开始预训练 RoBERTa 模型 在本章中,我们将从头开始构建一个 RoBERTa 模型。该模型将使用我们在 BERT 模…

DVWA靶场

DVWA是指Damn Vulnerable Web Application,是一个用于教育和训练网络安全人员的虚拟漏洞应用程序。DVWA模拟了一个包含了多种常见Web安全漏洞的虚拟环境,包括SQL注入、XSS攻击、CSRF攻击等等。通过使用DVWA,安全人员可以学习和实践各种Web安全…

Django-admin单例模式和懒加载

Django-admin单例模式和懒加载 单例模式 class Foo:def __init__(self):self.name "张三"def __new__(cls, *args, **kwargs):empty_object super().__new__(cls)return empty_objectobj1 Foo() obj2 Foo()当我们实例化对象时,就会在内存开一个空间…

呆马科技——智慧应急执法监管平台

在当今社会,安全生产的重要性日益凸显。对于各级政府和企事业单位,当务之急是如何高效地对突发事件进行执法管理。平台应运而生,旨在通过信息化、智能化技术,提升安全管理的效率与准确性。 一、平台特点 整合各类平台的信息资源&…

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南

公园景区伴随音乐系统-公园景区数字IP广播伴随音乐系统建设指南 由北京海特伟业任洪卓发布于2024年4月23日 随着“互联网”被提升为国家战略,传统行业与互联网的深度融合正在如火如荼地展开。在这一大背景下,海特伟业紧跟时代步伐,凭借其深厚…

jqGrid用法汇总(全经典)

jqGrid可以绑定XML,JSON和数组三种类型的数据。接下来通过本文给大家介绍jqGrid用法的相关知识,感兴趣的朋友一起学习吧 支持多种类型的数据集合作为数据源 jqGrid可以绑定三种类型的数据:XML,JSON和数组。使用不同的数据类型主要是设置datatype属性,它的值分别为…

Mysql--基础知识点--0.1--脏读、不可重复读、幻读

1 脏读、不可重复读、幻读 1.1 脏读 如果一个事务读到了另一个事务已修改且未提交的数据,则发生了脏读现象。 1.2 不可重复读 在一个事务里面多次读取同一个数据,若前后两次读到的数据不一致,则发生不可重复读现象。 1.3 幻读 在一个…

jdk版本冲突,java.lang.UnsupportedClassVersionError: JVMCFRE003

主要是编辑器所用的jdk版本和项目用的不一致导致的,虽然编译通过了,但是运行是会报错 选好后点击Apply点击ok,然后重新编译一遍项目就可以了

信息系统项目管理师——第14章项目沟通管理

本章节内容属于10大管理知识领域中的重点,选择、案例、论文都会考,而且是高频考点,需要我们重点学习。 选择题,稳定考3分左右,新教材基本考课本原话,这个分不能丢。 案例题,本期考的概率不高。 …

Eudic欧路词典for Mac:专业英语学习工具

Eudic欧路词典for Mac,作为专为Mac用户设计的英语学习工具,凭借其简捷高效的特点,成为众多英语学习者不可或缺的助手。 Eudic欧路词典for Mac v4.6.4激活版下载 这款词典整合了多个权威词典资源,如牛津、柯林斯、朗文等&#xff0…