【高质量】2024五一数学建模C题保奖思路+代码(后续会更新)

你的点赞收藏是我后续更新的最大动力!

一定要点击文末的卡片,那是获取资料的入口!

你是否在寻找数学建模比赛的突破点?

作为经验丰富的数学建模团队,我们将为你带来2024 年五一数学建模(C题)的全面解析包。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。

问题1:如图1,已知现场工作面的部分电磁辐射和声发射信号中存在大量干扰信号,有可能是工作面的其他作业或设备干扰等因素引起,这对后期的电磁辐射和声发射信号处理造成了一定的影响。应用附件1和2中的数据,完成以下问题。

(1.1) 建立数学模型,对存在干扰的电磁辐射和声发射信号进行分析,分别给出电磁辐射和声发射中的干扰信号数据的特征(不少于3个)。

(1.2) 利用问题(1.1)中得到的特征,建立数学模型,对2022年5月1日-2022年5月30日的电磁辐射和2022年4月1日-2022年5月30日及2022年10月10日-2022年11月10日声发射信号中的干扰信号所在的时间区间进行识别,分别给出电磁辐射和声发射最早发生的5个干扰信号所在的区间,完成表1和表2。

对于提出的数学建模问题,我们需要构建一个模型来分析受干扰的电磁辐射(EMR)和声发射(AE)信号,进而确定和记录特定时间段内的干扰信号。下面是针对问题1.1和1.2的详细分析和数学建模方法。

问题1.1 分析与建模思路

首先,需要从提供的数据中辨识出干扰信号的特征。根据问题描述和附加图表,干扰信号可能因其他操作或机械引起,这些干扰在信号中表现为异常波动或噪声。以下是构建模型的步骤:

特征识别

  1. 信号振幅突变:干扰通常导致信号振幅异常增高或降低。
  2. 频率变化:干扰可能引起信号的频率分布与正常工作时不同。
  3. 时间序列的非连续性:由于干扰的非周期性,信号的时间序列可能出现非连续性。

数学模型构建

可以使用统计学方法来分析和识别干扰特征: - 振幅分析:计算信号的平均振幅和标准差,通过比较实时数据与历史数据来识别异常。 Mean(X)=1n∑i=1nxi,SD(X)=1n∑i=1n(xi−Mean(X))2 \text{Mean}(X) = \frac{1}{n}\sum_{i=1}^{n}x_i, \quad \text{SD}(X) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - \text{Mean}(X))^2} - 频谱分析:利用快速傅里叶变换(FFT)分析信号频率组成,标识出频率的异常变化。 Xk=∑n=0N−1xne−2πiNkn,k=0,...,N−1 X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} kn}, \quad k = 0, ..., N-1 - 时间序列分析:应用时间序列分析技术,如自回归模型(AR),来预测并检测信号的非连续性。 Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t - 信号振幅的平均值和标准差: 平均振幅平均振幅=1n∑i=1nxi \text{平均振幅} = \frac{1}{n} \sum_{i=1}^{n} x_i 标准差平均振幅标准差=1n∑i=1n(xi−平均振幅)2 \text{标准差} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \text{平均振幅})^2} - 快速傅里叶变换(FFT): X(k)=∑n=0N−1x(n)e−j2πNkn X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} kn} - 自回归模型(AR): Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t

首先,我们需要从提供的附件中读取并分析电磁辐射(EMR)和声发射(AE)信号数据。数据以CSV格式存储,包括时间戳和相应的信号强度值。数据预处理步骤包括清洗数据,去除噪声和异常值,填补缺失数据。

问题1.2 应用模型

特征提取

为了识别干扰信号,我们需要提取与干扰相关的特征。基于问题描述,可以关注以下几个方面的特征:

  • 信号振幅的异常变化:通过计算窗口内信号的平均振幅和标准差,识别出那些超过平均水平一定阈值的异常点。
  • 信号的频率成分变化:使用快速傅里叶变换(FFT)来分析信号在不同时间窗口内的频率成分,识别出与正常模式不符的频率变化。
  • 时间序列的突变点检测:通过时间序列分析,如自回归模型(AR)或其他统计检测方法,来检测信号中的突变点。

干扰信号的检测

基于上述特征,构建模型来检测干扰信号。这可以通过设置特定的逻辑条件来实现,例如,当信号的振幅超过平均振幅加上两倍标准差时,或者当信号的频率成分突然变化时,认为检测到干扰。

记录干扰时间段

根据检测到的干扰信号,记录下发生干扰的时间段。这些数据将被用来填充所要求的表格。

应用上述模型来分析2022年5月1日至5月30日记录的EMR数据,以及2022年4月1日至5月30日及2022年10月10日至11月10日记录的AE数据。

步骤

  1. 数据预处理:对EMR和AE数据进行清洗,剔除明显的错误或缺失数据。
  2. 特征应用:应用问题1.1中定义的数学模型和特征,对数据进行扫描,识别出干扰信号。
  3. 时间段标定:标定初次出现的五次干扰信号的时间段。
import numpy as np
import pandas as pd
from scipy.fft import fft# 假设data为载入的信号数据,包含时间戳和信号强度
def detect_interference(data):results = []window_size = 30  # 定义检测窗口大小threshold = 3     # 定义异常阈值for i in range(len(data) - window_size + 1):window = data[i:i+window_size]mean = np.mean(window['signal'])std = np.std(window['signal'])# 检测振幅异常if any(abs(signal - mean) > threshold * std for signal in window['signal']):start_time = window['time'].iloc[0]end_time = window['time'].iloc[-1]results.append((start_time, end_time))if len(results) == 5:breakreturn results# 示例数据加载与处理
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 应用检测函数
emr_interferences = detect_interference(emr_data)
ae_interferences = detect_interference(ae_data)# 打印结果
print("EMR Interferences:", emr_interferences)
print("AE Interferences:", ae_interferences)
import pandas as pd
import numpy as np
from scipy.fft import fft
from statsmodels.tsa.ar_model import AutoReg
import matplotlib.pyplot as plt# 读取数据
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 数据预处理
emr_data.dropna(inplace=True)
ae_data.dropna(inplace=True)# 特征提取函数
def extract_features(data):window_size = 50  # 设定分析窗口大小threshold = 3     # 异常阈值features = []for start in range(0, len(data) - window_size, window_size):window = data.iloc[start:start + window_size]mean = window['signal'].mean()std = window['signal'].std()# 检测异常振幅if any(abs(window['signal'] - mean) > mean + threshold * std):features.append((data.iloc[start]['timestamp'], data.iloc[start + window_size]['timestamp']))return features# 应用特征提取
emr_features = extract_features(emr_data)
ae_features = extract_features(ae_data)# 输出结果
print("EMR干扰时间段:", emr_features[:5])  # 只显示前5个结果
print("AE干扰时间段:", ae_features[:5])  # 只显示前5个结果

填充表格

我们将根据代码运行结果(完整代码可以和我交流得到)如下填充表格:

表1:EMR信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 emr_interferences[0][0]根据 emr_interferences[0][1]
2根据 emr_interferences[1][0]根据 emr_interferences[1][1]
3根据 emr_interferences[2][0]根据 emr_interferences[2][1]
4根据 emr_interferences[3][0]根据 emr_interferences[3][1]
5根据 emr_interferences[4][0]根据 emr_interferences[4][1]

表2:AE信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 ae_interferences[0][0]根据 ae_interferences[0][1]
2根据 ae_interferences[1][0]根据 ae_interferences[1][1]
3根据 ae_interferences[2][0]根据 ae_interferences[2][1]
4根据 ae_interferences[3][0]根据 ae_interferences[3][1]
5根据 ae_interferences[4][0]根据 ae_interferences[4][1]

其余题目正在抓紧编写!随时更新!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/317392.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

复旦微JFM7VX690计算后IO接口模块,用于雷达信号处理、数据处理等需要高速密集计算的应用场景

计算后IO接口模块 1 介绍 1.1 产品概述 计算后IO接口模块主要由复旦微JFM7VX690型FPGA、国产以太网收发器YT8521、国产BMC芯片GD32F450、国产CPLD芯片EF2L45BG256B、国产内存颗粒等主要芯片组成,采用标准6U VPX尺寸设计。 本计算后IO接口模块主要用于雷达信号处…

Nginx负载均衡主备模式

1. 背景 使用Nginx代理后端服务,有时候某些服务是不能使用多台负载均衡,但又想保障高可用,所以采用主备模式,记录如下: 2. 参考 nginx 负载均衡Nginx-负载均衡-后端状态max_conns、down、backup、max_fails、fail_t…

【webrtc】MessageHandler 1: 基于线程的消息处理:以10毫秒处理音频为例

基于m98 G:\CDN\rtcCli\m98\src\audio\null_audio_poller.h分发的消息由MessageHandler 类通过其抽象接口OnMessage 实现处理 NullAudioPoller NullAudioPoller 是一个处理audio的消息的分发器 poll 启动:

2024深圳杯数学建模竞赛A题(东三省数学建模竞赛A题):建立火箭残骸音爆多源定位模型

更新完整代码和成品完整论文 《2024深圳杯&东三省数学建模思路代码成品论文》↓↓↓(浏览器打开) https://www.yuque.com/u42168770/qv6z0d/zx70edxvbv7rheu7?singleDoc# 2024深圳杯数学建模竞赛A题(东三省数学建模竞赛A题&#xff0…

【Go 语言入门专栏】Go 语言的起源与发展

前言 Go 语言是当下最为流行的编程语言之一,大约在 2020、2021 年左右开始于国内盛行,许多大厂很早就将部分 Java 项目迁移到了 Go,足可看出其在性能方面的优越性。 相信各位都知道,在爬虫业务中,并发是一个关键的需…

解决iview(view ui)中tabs组件中使用图片预览组件ImagePreview,图片不显示问题

同学们可以私信我加入学习群! 正文开始 前言一、问题描述二、原因分析三、解决方案总结 前言 最近在写个人项目的web端和浏览器插件,其中一个功能是base64和图片的转换。因为分成四个小功能,所以使用的iview的tabs来展示不同功能&#xff0c…

如何解决DA14531编译工程出现大量报错的问题

在编译DA14531某个工程时,在这台电脑可以编译,另外一台电脑就编译不过,出现很多错误问题。那要怎样处理呢? 建议安装新MDK版本 可能是MDK版本问题,在不同的电脑安装不同的MDK版本,用新的版本可以编译通过&…

计算机网络—数据链路层

一、数据链路层的基本概念 结点:主机、路由器 链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路 数据链路:网络中两个结点之间的逻辑通道,把实现控制数据协议的…

java在应用程序里获取不到扬声器设备,如何解决?

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

MF(推荐系统的矩阵分解技术)论文笔记

论文概述 推荐系统的矩阵分解技术可以为用户提供更为准确的个性化推荐,对比传统的近邻技术,矩阵分解技术可以纳入更多信息,如隐式反馈、时间效应和置信度 近邻技术:基于用户或物品之间的相似性进行推荐,当用户之间已…

针孔相机模型原理坐标系辨析内参标定流程内参变换

针孔相机的内参标定 针孔相机原理真空相机模型图片的伸缩和裁剪变换 内参标定———非线性优化张正定标定详细原理(含公式推导)通过多张棋盘格照片完成相机的内参标定流程(C代码)其他工具箱 相机分为短焦镜头和长焦镜头,短焦镜头看到的视野更广阔,同样距…

CSS高级选择器

一、属性选择器 以value开头的att属性的E元素&#xff1a;E[att^"value"]{ ;} a[href^http]{background-color"red";} css a[href^http]{background-color"red"; } html <!DOCTYPE html> <html lang"en"> <head&…

MySQL基础学习(待整理)

MySQL 简介 学习路径 MySQL 安装 卸载预安装的mariadb rpm -qa | grep mariadb rpm -e --nodeps mariadb-libs安装网络工具 yum -y install net-tools yum -y install libaio下载rpm-bundle.tar安装包&#xff0c;并解压&#xff0c;使用rpm进行安装 rpm -ivh \ mysql-communi…

【数据结构(邓俊辉)学习笔记】向量04——有序向量

文章目录 0.概述1.比较器2.有序性甄别3.唯一化3.1低效算法3.1.1实现3.1.2 复杂度3.1.3 改进思路3.2 高效算法3.2.1 实现3.2.2 复杂度 4.查找4.1统一接口4.2 语义定义4.3 二分查找4.3.1 原理4.3.2 实现4.3.3 复杂度4.3.4 查找长度4.3.5 不足 4.4 Fibonacci查找4.4.1 改进思路4.4…

图搜索算法详解与示例代码

在计算机科学领域&#xff0c;图搜索算法是一类用于在图数据结构中查找特定节点或路径的算法。图搜索算法在许多领域都有着广泛的应用&#xff0c;包括网络路由、社交网络分析、游戏开发等。本文将详细介绍几种常见的图搜索算法&#xff0c;包括深度优先搜索&#xff08;DFS&am…

视频改字祝福 豪车装X系统源码uniapp前端源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 uniapp视频改字祝福 豪车装X系统源码 全开源。 创意无限&#xff01;AI视频改字祝福&#xff0c;豪车装X系统源码开源&#xff0c;打造个性化祝福视频不再难&#xff01; 想要为你的…

【论文阅读】ChipNeMo中的数据集处理

前面总体学习了《ChipNeMo: Domain-Adapted LLMs for Chip Design》&#xff0c;然后又继续仔细看了论文中的领域适配分词和领域数据微调的预训练检索模型&#xff0c;对于数据集的处理&#xff0c;也需要仔细看一下。 提炼重点&#xff1a;1&#xff09;对于数据集&#xff0…

Docker: 如何不新建容器 修改运行容器的端口

目录 一、修改容器的映射端口 二、解决方案 三、方案 一、修改容器的映射端口 项目需求修改容器的映射端口 二、解决方案 停止需要修改的容器 修改hostconfig.json文件 重启docker 服务 启动修改容器 三、方案 目前正在运行的容器 宿主机的3000 端口 映射 容器…

启发式搜索算法4 -遗传算法实战:吊死鬼游戏

相关文章: 启发式搜索算法1 – 最佳优先搜索算法 启发式搜索算法2 – A*算法 启发式搜索算法2 – 遗传算法 有一个小游戏叫吊死鬼游戏&#xff08;hangman&#xff09;&#xff0c;在学习英语的时候&#xff0c;大家有可能在课堂上玩过。老师给定一个英文单词&#xff0c;同学们…

设计模式之监听器模式ListenerPattern(三)

一、介绍 监听器模式是一种软件设计模式&#xff0c;在对象的状态发生改变时&#xff0c;允许依赖它的其他对象获得通知。在Java中&#xff0c;可以使用接口和回调机制来实现监听器模式。 二、代码实例 1、事件Event类 package com.xu.demo.listener;// 事件类 public class…