自动化机器学习——网格搜索法:寻找最佳超参数组合

自动化机器学习——网格搜索法:寻找最佳超参数组合

在机器学习中,选择合适的超参数是模型调优的关键步骤之一。然而,由于超参数的组合空间通常非常庞大,手动调整超参数往往是一项耗时且困难的任务。为了解决这个问题,自动化机器学习中的网格搜索法成为了一种常用的方法。本文将介绍网格搜索法的概述、原理及其Python实现示例代码,并通过可视化展示其效果。

1. 概述

在机器学习中,超参数是在模型训练之前需要手动设置的参数,例如学习率、正则化参数、树的数量等。这些超参数的选择对于模型的性能和泛化能力具有重要影响。而网格搜索法是一种通过遍历指定的超参数空间来寻找最佳超参数组合的方法,它通过穷举搜索的方式寻找最优解,是一种简单而有效的超参数调优方法。

2. 网格搜索法

网格搜索法的基本思想是将每个超参数的可能取值组合成一个网格,然后穷举搜索所有可能的组合,对每个组合进行交叉验证,并评估模型在验证集上的性能。最终,选择在验证集上性能最佳的超参数组合作为最终模型的参数。网格搜索法的优点是简单易用,适用于各种机器学习模型和超参数空间的情况。

3. 用Python实现示例代码

下面将通过一个简单的分类问题示例来演示网格搜索法的实现。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
import matplotlib.pyplot as plt# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义SVM模型
svm_model = SVC()# 定义超参数网格
param_grid = {'C': [0.1, 1, 10, 100],'gamma': [1, 0.1, 0.01, 0.001],'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}# 使用网格搜索进行超参数调优
grid_search = GridSearchCV(estimator=svm_model, param_grid=param_grid, cv=5, verbose=2, n_jobs=-1)# 拟合模型
grid_search.fit(X_train, y_train)# 输出最佳参数
print("Best parameters found: ", grid_search.best_params_)# 在测试集上评估模型性能
best_model = grid_search.best_estimator_
accuracy = best_model.score(X_test, y_test)
print("Accuracy on test set: ", accuracy)

在这里插入图片描述

总结

本文介绍了自动化机器学习中的网格搜索法,通过穷举搜索超参数空间来寻找最佳超参数组合。通过Python实现了一个简单的分类问题示例,并通过可视化展示了网格搜索法的效果。网格搜索法是一种简单而有效的超参数调优方法,在实际应用中具有广泛的应用价值。通过合理设置超参数网格,可以帮助我们快速找到模型的最佳超参数组合,从而提高模型的性能和泛化能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319309.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

连接HiveMQ代理器实现MQTT协议传输

先下载MQTTX: MQTTX: Your All-in-one MQTT Client Toolbox 使用线上免费的MQTTX BROKER:The Free Global Public MQTT Broker | Try Now | EMQ 打开MQTTX,创建连接,点击NEW SUBSCRIPTION,创建一个主题,这里使用test/topic,在下面Json中填写…

使用 ORPO 微调 Llama 3

原文地址:https://towardsdatascience.com/fine-tune-llama-3-with-orpo-56cfab2f9ada 更便宜、更快的统一微调技术 2024 年 4 月 19 日 ORPO 是一种新的令人兴奋的微调技术,它将传统的监督微调和偏好校准阶段合并为一个过程。这减少了训练所需的计算…

Java零基础入门到精通_Day 8

1.API 应用程序接口 Java API:指的就是JDK 中提供的各种功能的Java类这些类将底层的实现封装了起来,我们不需要关心这些类是如何实现的,只需要学习这些类如何使用即可,我们可以通过帮助文档来学习这些API如何使用。 2. String String 类…

【副本向】Lua副本逻辑

副本生命周期 OnCopySceneTick() 子线程每次心跳调用 --副本心跳 function x3323_OnCopySceneTick(elapse)if x3323_g_IsPlayerEnter 0 thenreturn; -- 如果没人进入,则函数直接返回endif x3323_g_GameOver 1 thenif x3323_g_EndTick > 0 thenx3323_CountDown…

循环神经网络完整实现(Pytorch 13)

一 循环神经网络的从零开始实现 从头开始基于循环神经网络实现字符级语言模型。 %matplotlib inline import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35 train_iter, vocab …

分布式websocket IM即时通讯聊天开源项目如何启动

前言 自己之前分享了分布式websocket的视频有同学去fork项目了,自己启动一下更方便理解项目嘛。然后把项目启动需要的东西全部梳理出来。支持群聊单聊,表情包以及发送图片。 支持消息可靠,消息防重,消息有序。同时基础架构有分布式权限&…

OneFlow深度学习框原理、用法、案例和注意事项

本文将基于OneFlow深度学习框架,详细介绍其原理、用法、案例和注意事项。OneFlow是由中科院计算所自动化研究所推出的深度学习框架,专注于高效、易用和扩展性强。它提供了一种类似于深度学习库的接口,可以用于构建神经网络模型,并…

Android4.4真机移植过程笔记(三)

如果文章字体看得不是很清楚,大家可以下载pdf文档查看,文档已上传~oo~ 7、安装加密APK 需要修改文件如下: 相对Android4.2改动还是蛮大的,有些文件连路径都变了: //Android4.2 1、frameworks/native/libs…

STL速查

容器 (Containers) 图解容器 支持随机访问 stringarrayvectordeque支持支持支持支持 string 类 构造函数 string(); ------创建一个空的字符串 例如: string str;string(const char* s); ------使用字符串s初始化string(const string& str); ------拷贝构造 赋值操作…

C++学习--点滴记录011

11函数提高 11.1 函数默认参数 在C中&#xff0c;函数的形参列表中的形参可以有默认值 语法&#xff1a; 返回值类型 函数名 &#xff08;参数 默认值&#xff09;{} 示例&#xff1a; #include <iostream> using namespace std;int func(int a, int b 10, int c …

网络基础-网络设备介绍

本系列文章主要介绍思科、华为、华三三大厂商的网络设备 网络设备 网络设备是指用于构建和管理计算机网络的各种硬件设备和设备组件。以下是常见的网络设备类型&#xff1a; 路由器&#xff08;Router&#xff09;&#xff1a;用于连接不同网络并在它们之间转发数据包的设备…

wpf线程中更新UI的4种方式

在wpf中&#xff0c;更新UI上面的数据&#xff0c;那是必经之路&#xff0c;搞不好&#xff0c;就是死锁&#xff0c;或者没反应&#xff0c;很多时候&#xff0c;都是嵌套的非常深导致的。但是更新UI的方式&#xff0c;有很多的种&#xff0c;不同的方式&#xff0c;表示的意思…

国内各种免费AI聊天机器人(ChatGPT)推荐(中)

作者主页&#xff1a;点击&#xff01; 国内免费AI推荐(ChatGPT)专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年4月29日15点20分 随着人工智能技术的不断发展&#xff0c;AI聊天机器人已经逐渐融入我们的日常生活。它们可以提供各种服务&#xff0c;例如聊天、…

Golang | Leetcode Golang题解之第68题文本左右对齐

题目&#xff1a; 题解&#xff1a; // blank 返回长度为 n 的由空格组成的字符串 func blank(n int) string {return strings.Repeat(" ", n) }func fullJustify(words []string, maxWidth int) (ans []string) {right, n : 0, len(words)for {left : right // 当前…

leetCode72. 编辑距离

leetCode72. 编辑距离 基本思路&#xff1a; 代码 class Solution { public:int minDistance(string a, string b) {// a,b的0不做表示&#xff0c;所以从1开始&#xff0c;dp状态表示&#xff0c;这种办法会很方便a a, b b;int n a.size();int m b.size(); // 定…

Elasticsearch 数据聚合

Bucket聚合&#xff08;桶聚合&#xff09; 对文档做分组&#xff0c;aggs 按照文档字段值或日期进行分组&#xff0c;能参与分词的字段不能做聚合&#xff0c;如text类型的字段 例如&#xff1a;根据城市名称做聚合&#xff0c;也就是城市名称对数据进行分组统计。可以加qu…

Sarcasm detection论文解析 |使用基于多头注意力的双向 LSTM 进行讽刺检测

论文地址 论文地址&#xff1a;https://ieeexplore.ieee.org/document/8949523 论文首页 笔记框架 使用基于多头注意力的双向 LSTM 进行讽刺检测 &#x1f4c5;出版年份:2020 &#x1f4d6;出版期刊:IEEE Access &#x1f4c8;影响因子:3.9 &#x1f9d1;文章作者:Kumar Avinas…

Educational Codeforces Round 165 (Rated for Div. 2) (C、D)

1969C - Minimizing the Sum 题意&#xff1a; 思路&#xff1a;观察到操作数很小&#xff0c;最值问题操作数很容易想到dp&#xff0c;用表示第个元素&#xff0c;操作了次的最小值总和&#xff0c;转移的时候枚举连续操作了几次即可&#xff0c;而连续操作了几次即将全部变成…

Llama改进之——SwiGLU激活函数

引言 今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1&#xff0c;该激活函数取得了不错的效果&#xff0c;得到了广泛地应用。 SwiGLU是GLU的一种变体&#xff0c;其中包含了GLU和Swish激活函数。 GLU GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层…

UE5 蓝图入门

基础节点创建&#xff1a; 常量&#xff1a; 按住 1 &#xff0c;点击鼠标左键&#xff0c;创建常量 二维向量&#xff1a; 按住 2 &#xff0c;点击鼠标左键&#xff0c;创建二维向量 三维向量&#xff1a; 按住 3 &#xff0c;点击鼠标左键 乘法&#xff1a; 按住 m 键…