【小浩算法 BST与其验证】

BST与其验证

  • 前言
  • 我的思路
    • 思路一 中序遍历+判断数组无重复递增
    • 思路二 递归+边界最大值最小值的传递
  • 我的代码
    • 测试用例1
    • 测试用例2

前言

BST是二叉树一个经典应用,我们常常将其用于数据的查找以及构建平衡二叉树等。今天我所做的题目是验证一颗二叉树是否为二叉搜索树,应该还算是基础题吧。

我的思路

其实最开始这个题目我的思路并不清晰,基本上只能想到去用递归,但是如何去构建递归的子问题,我想不太到,哈哈哈还是算法小白呢,想不到很正常(偷偷安慰自己…)。思路学习链接:
小浩算法-BST验证
力扣–验证二叉搜索树【98】

思路一 中序遍历+判断数组无重复递增

这个思路我觉得很巧妙,因为它利用了一个特性:二叉搜索树的中序遍历得到的一定是一个完全递增的序列(我们考虑的是二叉树里面无重复值),随后我们只需要判断一下遍历的结果是否严格递增就好了。总结一下:

  • 先中序遍历BST把结果存储在一个vector里面。
  • 判断该vector是否严格递增。
//验证是否为二叉搜索树void isBST(node* root) {//先创建一个数组vector<char> midOrderArr;midOrder(root, midOrderArr);//输出看一下我的数组里面存的是不是中序遍历的值for (int i = 0; i < midOrderArr.size(); i++) {cout << midOrderArr[i] << ' ';}cout << endl;for (int i = 0; i < midOrderArr.size()-1; i++) {if (midOrderArr[i] >= midOrderArr[i + 1]) {cout << "该二叉树 不是一颗二叉搜索树!" << endl;return;}}cout << "该二叉树 是一颗二叉搜索树!" << endl;}//二叉树的中序遍历void midOrder(node* root,vector<char>& Arr) {if (root == nullptr) {return;}midOrder(root->left, Arr);Arr.push_back(root->info);midOrder(root->right, Arr);}

思路二 递归+边界最大值最小值的传递

这个题目有一个很有意思的陷阱,那就是我们不光要求 一个结点的左孩子比它小,右孩子比它大。我们要求的是,这个结点的左子树上的所有结点都比它小,右子树上的所有结点都比他大

因此在递归的时候,我们需要一个上界和下界
首先需要考虑初始化的问题,这里我们用到climits库里面的LONG_MAX和LONG_MIN.代表long long 类型的最大值和最小值。
递归左子树,上界是根节点的值,下界就选上一层的min ;递归右子树,下界是根节点的值,上界就选上一层的max。perfect!完美!

bool isBST_Recursion(node* root,long long min,long long max) {if (root == nullptr) {return true;}if (root->info <= min || root->info >=max) {//cout << "该二叉树不是一个二叉搜索树";return false;}return isBST_Recursion(root->left, min, root->info) && isBST_Recursion(root->right, root->info, max);}

我的代码

测试用例1

1248##9##5##36##7##

在这里插入图片描述

测试用例2

421##3##65##7##

在这里插入图片描述

#include <iostream>
#include<algorithm>
#include<cmath>
#include <queue> 
#include<climits>
using namespace std;struct node {char info;node* left;node* right;node(char data) :info(data), left(nullptr), right(nullptr) {};node() :info(NULL), left(nullptr), right(nullptr) {};
};class binaryTree {
private:node* root;
public:binaryTree() {root = new node(NULL);}//得到树的根结点node* getRoot() {return root;}//以递归的方式构建一棵树void createTree(node*& t) {char str;cin >> str;if (str == '#') {t = NULL;}else {t = new node;//为t开辟空间t->info = str;createTree(t->left);createTree(t->right);}}//树的深度int depth(node* root) {if (root == nullptr) {return 0;}int left = depth(root->left);int right = depth(root->right);return max(left, right) + 1;}//打印一棵树满二叉树,只能打印满二叉树,节点数目最好不要超过10void print(node*& root) {//存放打印的二叉树char str[10][100] = {};queue<node*> q;int h = depth(root);q.push(root);int index = 0;while (!q.empty()) {int size = q.size();//存放每一层的节点vector<char> list;for (int i = 0; i < size; i++) {node* temp = q.front();q.pop();list.push_back(temp->info);//cout << temp->info;if (temp->left != nullptr) {q.push(temp->left);}if (temp->right != nullptr) {q.push(temp->right);}}bool flag = true;int j = 0;//打印前面部分空白while (j <= 2 * h - 1 - index) {str[index][j] = ' ';j++;}//保持第一行居中if (index == 0) {for (int m = 0; m < h - 2; m++) {str[index][j++] = ' ';}}for (int k = 0; k < list.size(); k++) {//如果是一层最后一个节点if (k == list.size() - 1) {str[index][j++] = list[k];}else {//相邻左右子节点if (k % 2 == 0) {str[index][j++] = list[k];for (int l = 0; l < 3 + 2 * (h - index / 2 - 1); l++) {str[index][j++] = ' ';}}else {str[index][j++] = list[k];str[index][j++] = ' ';}}}index += 2;//cout << endl;}for (int i = 0; i < 10; i++) {if (i % 2 == 1) {for (int j = 0; j < 100; j++) {str[i][j] = ' ';}}}for (int i = 0; i < 10; i++) {if (i % 2 == 0) {for (int j = 0; j < 100; j++) {if (str[i][j] - '0' >= 0 && str[i][j] - '0' <= 9 && i < 2 * h - 2) {str[i + 1][j - 1] = '/';str[i + 1][j + 1] = '\\';}}}}for (int i = 0; i < 10; i++) {for (int j = 0; j < 100; j++) {cout << str[i][j];}cout << endl;}}void DeepFirstSearch(node* root) {if (root == NULL) {return;}else {cout << root->info << ' ';DeepFirstSearch(root->left);DeepFirstSearch(root->right);}}void BreadthFirstSearch(node* root) {queue<node> myTree;if (root != nullptr) {myTree.push(*root);}while (!myTree.empty()) {cout << myTree.front().info << ' ';if (myTree.front().left != nullptr) {myTree.push(*(myTree.front().left));}if (myTree.front().right != nullptr) {myTree.push(*(myTree.front().right));}myTree.pop();}}//用于BFS递归的主函数void BFS_Recursion(node* root, int level, vector<vector<char>>& res) {if (root == nullptr) {return;}if (res.size() < level) {res.push_back(vector<char>());}res[level - 1].push_back(root->info);BFS_Recursion(root->left, level + 1, res);BFS_Recursion(root->right, level + 1, res);}void BreadthFirstSearch_recursion(node* root) {vector<vector<char>> res;BFS_Recursion(root, 1, res);for (int i = 0; i < res.size(); i++) {for (int j = 0; j < res[i].size(); j++) {cout << res[i][j] << " ";}}}//验证是否为二叉搜索树void isBST(node* root) {//先创建一个数组vector<char> midOrderArr;midOrder(root, midOrderArr);//输出看一下我的数组里面存的是不是中序遍历的值for (int i = 0; i < midOrderArr.size(); i++) {cout << midOrderArr[i] << ' ';}cout << endl;for (int i = 0; i < midOrderArr.size()-1; i++) {if (midOrderArr[i] >= midOrderArr[i + 1]) {cout << "该二叉树 不是一颗二叉搜索树!" << endl;return;}}cout << "该二叉树 是一颗二叉搜索树!" << endl;}//二叉树的中序遍历void midOrder(node* root,vector<char>& Arr) {if (root == nullptr) {return;}midOrder(root->left, Arr);Arr.push_back(root->info);midOrder(root->right, Arr);}bool isBST_Recursion(node* root,long long min,long long max) {if (root == nullptr) {return true;}if (root->info <= min || root->info >=max) {//cout << "该二叉树不是一个二叉搜索树";return false;}return isBST_Recursion(root->left, min, root->info) && isBST_Recursion(root->right, root->info, max);}};int main() {binaryTree T;node* root = T.getRoot();T.createTree(root);cout << "树的深度:" << T.depth(root) << endl;T.print(root);cout << "\n===========mid-order recursion===================="<<endl;T.isBST(root);cout << "\n===========upper and lower bounds recursion====================" << endl;if (T.isBST_Recursion(root, LONG_MIN, LONG_MAX)) {cout << "这是一颗二叉搜索树" << endl;}else {cout << "这不是一颗二叉搜索树" << endl;}/*cout << "\n===========DFS recursion====================" << endl;T.DeepFirstSearch(root);cout << "\n===========BFS QUEUE====================" << endl;T.BreadthFirstSearch(root);cout << "\n===========BFS recursion====================" << endl;T.BreadthFirstSearch_recursion(root);*/return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319660.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习-K近邻算法(KNN)

目录 什么是KNN算法 图解KNN基本算法 &#xff08;1&#xff09;k近邻算法中k的选取 &#xff08;2&#xff09;距离函数 &#xff08;3&#xff09;归一化处理 &#xff08;4&#xff09;概率kNN KNN算法的优缺点 优势 缺点 KNN算法总结 什么是KNN算法 k近邻算法&…

农作物害虫检测数据集VOC+YOLO格式18975张97类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;18975 标注数量(xml文件个数)&#xff1a;18975 标注数量(txt文件个数)&#xff1a;18975 标…

周三多《管理学原理》第3版/考研真题/章节练习题

普通高等教育“十一五”国家级规划教材《管理学原理》&#xff08;第3版&#xff0c;周三多、陈传明、龙静编著&#xff0c;南京大学出版社&#xff09;是我国高校广泛采用的管理学权威教材之一&#xff0c;也被众多高校&#xff08;包括科研机构&#xff09;指定为考研考博专业…

电脑技巧:推荐一款非常好用的媒体播放器PotPlayer

目录 一、 软件简介 二、功能介绍 2.1 格式兼容性强 2.2 高清播放与硬件加速 2.3 自定义皮肤与界面布局 2.4 多音轨切换与音效增强 2.5 字幕支持与编辑 2.6 视频截图与录像 2.7 网络流媒体播放 三、软件特色 四、使用技巧 五、总结 一、 软件简介 PotPlayer播放器 …

排序-八大排序FollowUp

FollowUp 1.插入排序 (1).直接插入排序 时间复杂度:最坏情况下:0(n^2) 最好情况下:0(n)当数据越有序 排序越快 适用于: 待排序序列 已经基本上趋于有序了! 空间复杂度:0(1) 稳定性:稳定的 public static void insertSort(int[] array){for (int i 1; i < array.length; i…

使用Android Studio 搭建AOSP FrameWork 源码阅读开发环境

文章目录 概述安装Android Studio编译源码使用Android Studio打开源码制作ipr文件直接编译成功后自动打开Android Studio 修改SystemUI验证开发环境 概述 我们都知道Android的系统源码量非常之大&#xff0c;大致有frameworka层源码&#xff0c;硬件层(HAL)源码&#xff0c;内…

能源监控新方案:IEC104转MQTT网关在新能源发电中的应用

需求背景 近些年&#xff0c;我国新能源产业快速发展&#xff0c;光伏、风电等新能源项目高速增长&#xff0c;新能源发电已经成为国家能源结构的重要组成部分。 打造数字化、智能化、信息化的电力物联网系统&#xff0c;实现光伏风电等新能源发电站的远程监控、远程维护是新能…

DRF中的请求入口分析及request对象分析

DRF中的请求入口分析及request对象分析 django restframework框架是在django的基础上又给我们提供了很多方便的功能&#xff0c;让我们可以更便捷基于django开发restful API 1 drf项目 pip install django pip install djangorestframework1.1 核心配置 INSTALLED_APPS [d…

数据库开发关键之与DQL查询语句有关的两个案例

案例 案例1 条件分页查询 查看项目经理提供给我们的需求文档 模糊匹配的含义是 只要包含"张"就可以 use dduo;-- 按照需求完成员工管理的条件分页查询 根据输入条件 查询第一页的数据 每页展示10条记录 -- 输入条件&#xff1a; -- 姓名&#xff1a; 张 -- 年龄&…

【Java】基本程序设计结构(一)

前言&#xff1a;现在&#xff0c;假定已经成功安装了JDK&#xff0c;并且能够运行上篇示例程序。本篇将开始介绍Java程序中的基本设计结构&#xff0c;其中包括&#xff1a;一个简单的Java应用&#xff0c;注释&#xff0c;数据类型&#xff0c;变量与常量&#xff0c;运算符&…

n-Track Studio Suite for Mac激活版:打造您的专属音频工作室

n-Track Studio Suite for Mac是一款功能强大的数字音频工作站软件&#xff0c;让您在家中就能享受到专业录音棚的待遇。无论是录制人声、乐器还是MIDI序列&#xff0c;都能轻松应对。 n-Track Studio Suite for Mac激活版下载 这款软件拥有实时音高校准、时间拉伸和自动补足功…

HT32F52352 -- 解锁电调、电机速度控制

一、问题背景 1.1 硬件&#xff1a; 电池组&#xff0c;电子调速器&#xff08;好盈电调 /ESC&#xff09;&#xff0c;接收机&#xff08;HT32F52352&#xff09;&#xff0c;风扇。 1.2 软件 keil5 二、问题分析 通过1.1图中可知&#xff0c;我们只需要使用 HT32F52352 模拟…

TouchGFX 总结

文章目录 使用中文字体多屏幕间交换数据UI to MCUMCU to UI API文档参考横竖屏切换 使用中文字体 添加一个textArea&#xff0c;默认的英文文本可见&#xff0c;输入中文字体后就看不见了&#xff0c;是因为这个默认的字体不支持中文&#xff0c;改一下字体就可以了&#xff1…

【介绍下有那些常见的ssh功能】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

使用mapinfo软件的在线地图插件运行错误解决

使用mapinfo软件的在线地图插件运行错误解决 一、如何解决win10/win11家庭版运行MapInfo中的在线地图插件报错【unexpected error&#xff1b;quitting】问题&#xff1f;二、如何解决在线地图切换地图源时的报错问题&#xff1f; 一、如何解决win10/win11家庭版运行MapInfo中的…

java下乡扶贫志愿者招募管理系统springboot-vue

计算机技术在现代管理中的应用&#xff0c;使计算机成为人们应用现代技术的重要工具。能够有效的解决获取信息便捷化、全面化的问题&#xff0c;提高效率。 技术栈 前端&#xff1a;vue.jsElementUI 开发工具&#xff1a;IDEA 或者eclipse都支持 编程语言: java 框架&#xff1…

vue+element-ui实现横向长箭头,横向线上下可自定义文字(使用after伪元素实现箭头)

项目场景&#xff1a; 需要实现一个长箭头&#xff0c;横向线上下可自定义文字 代码描述 <div><span class"data-model">{{ //上方文字}}</span><el-divider class"q"> </el-divider>//分隔线<span class"data-mod…

【UnityRPG游戏制作】Unity_RPG项目_玩法相关

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;就业…

Vitis HLS 学习笔记--Schedule Viewer 调度查看器

目录 1. 简介 2. Schedule Viewer详解 2.1 视图说明 2.1.1 Operation\Control Step 2.1.2 周期关系图 2.1.3 Schedule Viewer 菜单栏 2.1.4 属性视图 2.2 内容说明 2.2.1 实参&#xff08;b&#xff09;解释 2.2.2 实参&#xff08;a&#xff09;解释 2.2.3 变量&am…

【C++】详解STL的容器之一:list

目录 简介 初识list 模型 list容器的优缺点 list的迭代器 常用接口介绍 获取迭代器 begin end empty size front back insert push_front pop_front push_back pop_back clear 源代码思路 节点设计 迭代器的设计 list的设计 begin() end() 空构造 ins…