[论文阅读] 测试时间自适应TTA

最初接触 CVPR2024 TEA: Test-time Energy Adaptation
[B站](1:35:00-1:53:00)https://www.bilibili.com/video/BV1wx4y1v7Jb/?spm_id_from=333.788&vd_source=145b0308ef7fee4449f12e1adb7b9de2
实现:

  1. 读取预训练好的模型参数
  2. 设计需要更新的模型参数,其他模块不进行梯度更新
  3. 设计辅助任务进行测试时间的模型更新

论文列表--待更新

  • Contrastive Test-Time Adaptation(CVPR 2022)
  • Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)
  • SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)
  • Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)
  • A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)
  • TEA: Test-time Energy Adaptation(CVPR 2024)

Contrastive Test-Time Adaptation(CVPR 2022)

缩写:CoTTA
在测试时适应过程中将自监督对比学习与自我训练相结合。
PDF Code
上图展示了不同的方法。说明方法 AdaContrast 如何利用目标域数据与以前的工作。(a) 如果不进行调整,就是普通训练,仅根据目标数据评估源模型。(b) 使用伪标签时,源分类器预测被用作自我训练的伪标签。(c)现有的伪标签方法SHOT使用离线全局细化来减少嘈杂的伪标签。(d)在AdaContrast中,我们考虑了目标样本之间的两种关系:我们使用对比学习来利用样本对中的信息来学习更好的目标表示,同时通过聚合邻域中的知识来完善伪标签。颜色表示伪标记的类。
这个方法是利用对比学习的Moco为基本框架。主要流程如下图所示。
对比测试时适应方法(AdaContrast)的框架:在适应开始时,模型和动量模型由源模型初始化。目标图像由一个弱增强和两个强增强转换。(a) 弱增强图像被编码为特征向量 w,用于根据与目标特征空间的余弦距离查找最近邻,该空间作为内存队列进行维护。对相关概率进行平均,然后进行 argmax 以获得用于自我训练和对比学习的精细伪标签 ˆ y。(b)将图像的两个强增强版本编码为动量对比度的查询和关键特征q,k[6,17],与自训练联合应用。不使用投影头;当前伪标签和历史伪标签用于排除同类负对。(c) 从弱增强图像中获得的伪标签 ˆ y 也用于监督强增强图像的预测,从而加强自训练中的弱-强一致性。多样性正则化也基于相同的预测。请注意,用于最近邻搜索和对比学习的队列是分开的,它们分别使用 w 和 k 进行更新(此处未说明)。
基本流程是:
对输入图片进行一次弱增强,两次强增强,分别输入到不同的编码器中。弱增强经过encoder得到的伪标签对强增强的输出进行监督。
弱图像增强获得的样本进入经过源模型参数初始化的encoder中获得概率分布,这个概率分布与内存队列中的概率分布计算距离,使用K个临近的概率分布的平均值作为当前样本的输出的概率分布,进行argmax变成用于自训练和对比学习的伪标签,然后当前样本的概率分布对内存队列进行更新。
两个强增强得到的输入进入Moco,一个是Encoder得到query,一个是momentum encoder得到key。momentum得到的key对key队列进行更新,利用伪标签的值mask相同类别的key,只是对不同类别进行对比学习(就是不会让正样本和正样本进行对比)。其余操作与Moco相同。
损失函数:weak aug输出作为伪标签进行监督的的CE Loss,一个CTR对比学习Loss,一个均匀分布Loss(防止错误的伪标签对模型造成不利影响,同时提高模型输出的多样性)

Improved Test-Time Adaptation for Domain Generalization(CVPR 2023)

PDF Code
目前TTA遇到的困难是:

  1. 辅助任务设计很困难,辅助任务设计不好,与原来损失如果不匹配,使用TTA性能会下降。目前大多设计一个看起来比较合理的辅助任务。
  2. 模型需要更新的参数设计也比较复杂,更新哪个模块设计比较困难。
    主要是应用一致性损失。
    ITTA的训练过程。我们使用源域中的 x 作为特征提取器 fθ(·) 的输入来获得表示 z 及其增强版本 z′,其中应用了 [74] 中的增强技能。分类器 fφ(·) 和权重子网 fw(·) 用于计算主损失 Lmain 和可学习一致性损失 Lwcont。详情请参阅我们的文字。
    ITTA的测试适配过程。与训练阶段不同的是,我们在特征提取器 fθ 的每个块之后都包含额外的自适应参数 fΘ。对于每个测试样本 x,从 f i θ 获得的中间表示 zi 和 z′i 在进入下一个块 f i+1 θ 之前传递到 f i Θ。我们使用可学习的一致性损失 Lwcont 作为更新 fΘ 的目标。详情请参阅我们的文字。
    在每个block后面加入自适应模块。改动模块的激活层得到两个不同的特征,这两个特征的差经过fw之后要接近于0。其中胖一点的Θ是要更新的参数,瘦一点的θ是模型原来的参数这个是不在测试时间进行改变的。

SoTTA: Robust Test-Time Adaptation on Noisy Data Streams(NeurIPS 2023)

PDF Code
观察:如果测试集中有noise、对抗性样本等,TTA的性能会直线下降。
问题:现有的TTA方法都无可避免的适应了混杂在测试数据中的不好的样本,导致模型性能下降。
与先前的假设(Clean TTA)不同,真实世界的测试流可能包括模型范围之外的意外噪声样本(噪声TTA),例如眩光、覆盖镜头的落叶、看不见的物体(例如火烈鸟)以及自动驾驶场景中的噪声。在这种情况下,现有 TTA 方法的准确性会降低。现有 TTA 方法和我们的方法 (SoTTA) 在 CIFAR10-C 上的平均分类准确率 (%)。与原始数据相比,当嘈杂的数据混合到测试流中(嘈杂)时,现有方法的性能会下降
SoTTA概述。SoTTA 通过高置信度统一类采样 (HUS) 实现输入鲁棒性,通过熵锐度最小化 (ESM) 实现参数鲁棒性。
创新点:

  1. 高置信度均匀采样,选取良性样本进行memory更新。
  2. 熵锐度最小化,实现模型参数鲁棒性。
    观察:噪声样本和良性样本的区别可以通过模型输出观察到。
    memory更新:对数据进行筛选更新,保持memory中样本类别相对平衡有代表性,噪声低。
    Loss函数:熵的一阶泰勒,使模型扰动前后保持不变。

Feature Alignment and Uniformity for Test Time Adaptation(CVPR 2023)

PDF Code
缩写:TSD
测试时间自蒸馏
首先将 TTA 作为功能修订问题来解决,因为源域和目标域之间存在域间隙。之后,按照两个测量对齐和均匀性来讨论测试时间特征修订。对于测试时间特征的均匀性,提出了一种测试时间自蒸馏策略,以保证当前批次和之前所有批次表示之间的均匀性一致性。对于测试时特征对齐,提出了一种记忆空间局部聚类策略,以对齐即将到来的批次的邻域样本之间的表示。为了解决常见的噪声标签问题,提出了熵和一致性滤波器来选择和删除可能的噪声标签。
我们提出的方法概述。蓝线表示向前和向后,黑线仅表示向前(即没有梯度反向传播)。不同颜色的特征、日志和原型意味着不同的类别。MSLC:记忆空间局部聚类。TSD:测试时间自蒸馏。
分类模型与原型模型输出的一致性。
我的理解,MSLC是对原型分类模型中的feature和Logits进行更新(更新原型向量,如果分类预测与原型预测一致,则让临近的原型向量与当前得到的特征更加接近,否则就远离,动量更新),TSD是计算分类模型和原型模型输出的一致性损失(为了防止原型模型输出的噪声先经过过滤器再计算CE Loss)。

A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts(arXiv 2023)

PDF github综述(没看完)
在这里插入图片描述
TTT:有Training data,可以改变模型训练的策略,重新训练一个新的模型。
TTA:只有预训练好的模型和测试数据。
这篇综述也说了一些相关的领域,比如自监督、半监督、领域泛化、领域适应、测试增强、迁移学习、持续学习等,对概念理解有帮助。
在这里插入图片描述
在这里插入图片描述
因为之后主要研究无源域自适应所以,只把无源域自适应部分进行整理。
在这里插入图片描述
在这里插入图片描述

TEA: Test-time Energy Adaptation(CVPR 2024)

PDF Code
缩写:TEA
观察:Test data的能量越低,测试的准确率越高。
在这里插入图片描述

在这里插入图片描述
让模型自行感知,以降低测试样本的能量,提高模型的泛化能力。

  1. 把分类器做成一个能量模型。
  2. 从模型中采样能量低的伪样本,提高伪样本的能量,降低测试数据的能量。
    看代码就是:从模型中采样能量低的伪样本,初始化得到一个输入,进入模型中得到梯度,根据梯度更新获得大致的局部最小值,作为伪样本,也就是模型中能量低的样本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/321085.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Re69:读论文 LaMDA: Language Models for Dialog Applications

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称:LaMDA: Language Models for Dialog Applications ArXiv网址:https://arxiv.org/abs/2201.08239 本文介绍谷歌提出的对话大模型LaMDA,主要关注对各项指标&#x…

一文带你了解 Oracle 23ai 新特性 Vector 的基础用法

Oracle Database 23ai 来了,虽然目前只是云上可商用,但是 OP 有 FREE 版本可以进行开发。 本文将介绍 Oracle 23ai 的新特性之一: AI 向量搜索,的部分内容。 向量数据类型 23ai 新增向量数据类型,可以用于表示一系列的…

【LeetCode刷题】875. 爱吃香蕉的珂珂

1. 题目链接 875. 爱吃香蕉的珂珂 2. 题目描述 3. 解题方法 简单的用我自己的理解来解释一下这道题的意思。 所以也就是说找到一个速度k,看还有没有比k更小的速度能吃完数组中的香蕉,如果有则继续寻找,没有则是k这个速度。就好比上面的解释…

成人职场英语口语柯桥外语培训之Big deal不是“大事”!别再翻译错啦!

关于deal, 其实有很多容易被人误解的表达, 小编今天就来给大家一一盘点~ 1, deal n. deal 作名词的时候意思是“交易;买卖”。 ❖ She got a new car for $1000! That was really a good deal! 她一千美金买了辆车!真是158575…

图片编辑工具-Gimp

一、前言 GIMP(GNU Image Manipulation Program)是一款免费开源的图像编辑软件,具有功能强大和跨平台的特性。 GIMP作为一个图像编辑器,它提供了广泛的图像处理功能,包括但不限于照片修饰、图像合成以及创建艺术作品…

新的循环体和define

目录 do while讲解 练习: 结果: 分析: 定义:宏(define) 练习: 结果: 分析: define的优缺点 优点: 缺点: 作业: 大家假期…

搭建父模块和工具子模块

第一章 项目父模块搭建 1.1 nancal-idsa 作为所有工程的父工程&#xff0c;用于管理项目的所有依赖版本。 1.2 指定 pom 类型模块&#xff0c;删除 src 目录&#xff0c;点击Reload project 1.3 添加依赖 pom.xml <parent> <groupId>org.springframework.…

很快就可以试用Domino 15了

大家好&#xff0c;才是真的好。 前几天在比利时的安普卫特举办的Engage2024大会已经结束&#xff0c;流出的现场照片很多&#xff0c;主要是会议场地照片很多&#xff0c;说是令人震撼&#xff1b;可惜这次一手的PPT和会议内容不多.是的&#xff0c;本来我也是在等与会者写的…

人脸识别开源算法库和开源数据库

目录 1. 人脸识别开源算法库 1.1 OpenCV人脸识别模块 1.2 Dlib人脸识别模块 1.3 SeetaFace6 1.4 DeepFace 1.5 InsightFace 2. 人脸识别开源数据库 2.1 CelebA 2.2 LFW 2.3 MegaFace 2.4 Glint360K 2.5 WebFace260M 人脸识别 (Face Recognition) 是一种基于人的面部…

2022 年全国职业院校技能大赛高职组云计算赛项试卷(私有云)

#需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私聊博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包及镜像&#xff09;或有问题的&#xff0c;可私聊博主&#xff01;&#xff01;&#xff01; #需要资源&#xff08;软件包…

代码随想录刷题随记30-贪心4

代码随想录刷题随记30-贪心4 860.柠檬水找零 leetcode链接 比较显然 class Solution {public boolean lemonadeChange(int[] bills) {int []accountnew int[3];for(int cur:bills){if(cur5)account[0];else if(cur10){account[0]--;if(account[0]<0)return false;account…

ICode国际青少年编程竞赛- Python-1级训练场-路线规划

ICode国际青少年编程竞赛- Python-1级训练场-路线规划 1、 Dev.step(3) Dev.turnLeft() Dev.step(4)2、 Dev.step(3) Dev.turnLeft() Dev.step(3) Dev.step(-6)3、 Dev.step(-2) Dev.step(4) Dev.turnLeft() Dev.step(3)4、 Dev.step(2) Spaceship.step(2) Dev.step(3)5、…

【论文阅读】Fuzz4All: Universal Fuzzing with Large Language Models

文章目录 摘要一、介绍二、Fuzz4All的方法2.1、自动提示2.1.1、自动提示算法2.1.2、自动提示的例子2.1.3、与现有自动提示技术的比较 2.2、fuzzing循环2.2.1、模糊循环算法2.2.2、Oracle 三、实验设计3.1、实现3.2、被测系统和baseline3.3、实验设置以及评估指标 四、结果分析4…

iPhone查看本机号码只需要这3招,不再为号码忘记犯愁!

在日常生活中&#xff0c;我们经常需要使用手机号码进行各种通讯活动&#xff0c;但有时候会忘记自己的手机号码&#xff0c;让人感到非常尴尬。不过&#xff0c;如果您是iPhone用户&#xff0c;那么您可以放心了&#xff01;因为在iphone查看本机号码只需要简单的几个步骤&…

linux系统 虚拟机的安装详细步骤

window&#xff1a; (1) 个人&#xff1a;win7 win10 win11 winxp (2)服务器&#xff1a;windows server2003 2008 2013 linux&#xff1a; (1)centos7 5 6 8 (2)redhat (3)ubuntu (4)kali 什么是linux: 主要是基于命令来完成各种操作&#xff0c;类似于DO…

使用STM32F103C8T6与蓝牙模块HC-05连接实现手机蓝牙控制LED灯

导言: 在现代智能家居系统中,远程控制设备变得越来越普遍和重要。本文将介绍如何利用STM32F103C8T6单片机和蓝牙模块HC-05实现远程控制LED灯的功能。通过这个简单的项目,可以学会如何将嵌入式系统与蓝牙通信技术相结合,实现远程控制的应用。 目录 导言: 准备工作: 硬…

Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作

Spring Data JPA系列 1、SpringBoot集成JPA及基本使用 2、Spring Data JPA Criteria查询、部分字段查询 3、Spring Data JPA数据批量插入、批量更新真的用对了吗 4、Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作 前言 通过前三篇Sprin…

GNU Radio创建FFT、IFFT C++ OOT块

文章目录 前言一、GNU Radio官方FFT弊端二、创建自定义的 C OOT 块1、创建 OOT 模块2、创建 OOT 块3、修改 C 和 CMAKE 文件4、编译及安装 OOT 块 三、测试1、grc 图2、运行结果①、时域波形对比②、频谱图对比 四、资源自取 前言 GNU Radio 自带的 FFT 模块使用起来不是很方便…

RT-DETR-20240507周更说明|更新Inner-IoU、Focal-IoU、Focaler-IoU等数十种IoU计算方式

RT-DETR改进专栏|包含主干、模块、注意力、损失函数等改进 专栏介绍 本专栏包含模块、卷积、检测头、损失等深度学习前沿改进,目前已有改进点70&#xff01;每周更新。 20240507更新说明&#xff1a; ⭐⭐ 更新CIoU、DIoU、MDPIoU、GIoU、EIoU、SIoU、ShapeIou、PowerfulIoU、…

04-28 周日 FastAPI Post请求同时传递文件和普通参数

04-28 周日 FastAPI Post请求同时传递文件和普通参数 时间版本修改人描述04-28 周日V0.1宋全恒新建文档2024年5月6日14:20:05V1.0宋全恒完成文档的传递 简介 由于在重构FastBuild的时候&#xff0c;为了支持TLS是否启用&#xff0c;在接口中需要同时传递文件参数和其他参数&am…