本地部署大模型ollama+docker+open WebUI/Lobe Chat

文章目录

  • 大模型工具Ollama
    • 下载
    • 安装
    • 运行
    • Spring Ai 代码测试
      • 加依赖
      • 配置
      • 写代码
  • ollama的web&Desktop
    • 搭建部署Open WebUI有两种方式
      • Docker Desktop
      • Docker部署Open WebUI
      • Docker部署Lobe Chat
        • 可以配置OpenAI的key
        • 也可以配置ollama
  • 大模型的选择

本篇基于windows环境下配置

大模型工具Ollama

https://ollama.com/

在这里插入图片描述

下载

https://ollama.com/download
windows环境下就安装windows版本
在这里插入图片描述

在这里插入图片描述

安装

点击下载的exe文件进行傻瓜式安装

运行

去ollama官网(models模块下)找大模型的名字,然后复制ollama的运行名字
https://ollama.com/library
在这里插入图片描述

ollama run qwen:4b

Spring Ai 代码测试

默认ollama会监听11434端口,可以使用下面命令查看
在这里插入图片描述

netstat -ano | findstr 11434

可以使用ollama list指令查看本地已经下好的大模型

ollama list

在这里插入图片描述

加依赖

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId></dependency>

或者使用23版以上的idea,创建spring项目的时候选最新版本,直接勾选上AI模块下的ollama模块

配置

spring:application:name: open-ai-05-ollamaai:ollama:base-url: http://localhost:11434chat:options:model: qwen:4b   

写代码

在这里插入图片描述

@RestController
public class OllamaController {@Autowiredprivate OllamaChatClient ollamaChatClient;@RequestMapping(value = "/ai/ollama")public Object ollama(@RequestParam(value = "msg") String msg){String call = ollamaChatClient.call(msg);System.out.println(call);return call;}@RequestMapping(value = "/ai/ollama2")public Object ollama2(@RequestParam(value = "msg") String msg){ChatResponse response = ollamaChatClient.call(new Prompt(msg,OllamaOptions.create().withModel("qwen:4b").withTemperature(0.4f)));String content = response.getResult().getOutput().getContent();System.out.println(content);return content;}
}

ollama的web&Desktop

看ollama的github主页下面有很多的web&Desktop,比较流行的是Open WenUI
Open WenUI Github https://github.com/open-webui/open-webui
Open WenUI 官网:https://github.com/open-webui/open-webui

搭建部署Open WebUI有两种方式

  1. Docker方式(官网推荐)
  2. 源代码部署安装方式:(文档https://docs.openwebui.com/getting-started/)

Docker Desktop

windows环境下推荐使用Docker Desktop

轻量化,界面化操作Docker容器
官网下载安装包
https://www.docker.com/products/docker-desktop/
下载后傻瓜式安装即可,安装后需要重启,然后打开Docker Desktop后的界面如下:
在这里插入图片描述

Docker部署Open WebUI

在docker中运行Open WebUI
在命令行运行docker指令

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v D:\dev\open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

这是一个 docker run 命令,用于启动一个新的 Docker 容器,下面是这个命令各个部分的解释:

  • docker run:这是 Docker 的命令,用于从指定的镜像启动一个新的容器;
  • -d:表示在“分离”模式下运行容器,即后台运行;
  • -p 3000:8080:端口映射,表示将宿主机的3000端口映射到容器的8080端口,当你访问宿主机的3000端口时,实际上会访问容器内的8080端口;
  • –add-host=host.docker.internal:host-gateway:这个选项向容器的 /etc/hosts 文件中添加一条记录,这通常用于让容器能够解析到宿主机的名称,并且将其 IP 地址设置为宿主机的网关地址,这在某些网络配置中很有用,尤其是当容器需要知道宿主机的地址时;
  • -v D:\dev\open-webui:/app/backend/data:卷挂载,这表示将宿主机的 D:\dev\open-webui 目录挂载到容器内的 /app/backend/data 目录,这样,容器和宿主机之间可以共享这个目录中的数据;
  • –name open-webui:为容器指定一个名称,这里是 open-webui;
  • –restart always:这个选项告诉 Docker 在容器退出时总是自动重启它,无论容器是因为何种原因退出,它都会自动重启;
  • ghcr.io/open-webui/open-webui:main:这是你要运行的 Docker 镜像的完整名称,ghcr.io 是 GitHub Container Registry 的地址,open-webui/open-webui 是镜像的仓库和名称,main是标签,通常表示该镜像的最新或主分支版本;

第一次运行需要拉取镜像比较慢,等待执行完成
在这里插入图片描述
这时候打开docker desktop就可以在images模块下看到拉取到的镜像
在这里插入图片描述

我们在拉取镜像的时候指定了Web UI的端口为3000,所以访问3000端口即可

http://localhost:3000/

第一次会要求登录
在这里插入图片描述
注册并登录
在这里插入图片描述
上来后和Chatgpt的页面很像的。

在这里插入图片描述
select model的地方选择上我们通过ollama部署的模型。然后就可以开心聊天了

Docker部署Lobe Chat

官网:https://lobehub.com/
Github:https://github.com/lobehub/lobe-chat

  • Built for you the Super Individual (专为你打造的超级个人)
  • 现代化设计的开源 ChatGPT/LLMs
  • 聊天应用与开发的UI框架; 支持语音合成、多模态、可扩展的(function call)插件系统;
  • 一键免费拥有你自己的ChatGPT/Gemini/Claude/Ollama 应用;

Lobe Chat 部署

  1. 使用 Vercel、Zeabur 或 Sealos 部署;
  2. 使用 Docker 部署;
docker run -d -p 3210:3210 -e OPENAI_API_KEY=sk-xxxx -e ACCESS_CODE=lobe66 --name lobe-chat lobehub/lobe-chat

完整的部署文档:https://lobehub.com/zh/docs/self-hosting/start

同样的,在拉取完成后,docker desktop中也会有镜像,
在这里插入图片描述
同样的方式,访问我们指定的3210端口
在这里插入图片描述
这个需要点击设置去配置模型

可以配置OpenAI的key

在这里插入图片描述
注意代理的地址要在后面加上/v1
配置好后就可以访问openai

也可以配置ollama

在这里插入图片描述
本机默认代理地址可以不用配,模型列表中选上你的模型就可以使用了。
还可以加插件使用
也可以在本地部署更强大的模型,使用图片,文件,音频等模态

大模型的选择

  • 大语言模型主要分为国外大模型 和 国内大模型;
  • 国外大模型,可能受到一些限制,或者不稳定;
  • 国内也有非常优秀的大模型,国内大模型排行榜:
    • https://www.superclueai.com/
    • 基于中文语言理解测评基准,包括代表性的数据集、基准(预训练)模型、语料库、排行榜;
    • 选择一系列有一定代表性的任务对应的数据集,做为测试基准的数据集,这些数据集会覆盖不同的任务、数据量、任务难度;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/321420.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS实战开发教程-如何开发一个2048游戏

今天为大家分享的是2048小游戏&#xff0c;先看效果图&#xff1a; 这个项目对于新手友友来说可能有一点难度&#xff0c;但是只要坚持看完一定会有收获。因为小编想分享的并不局限于ArkTs语言&#xff0c;而是编程思想。 这个游戏的基本逻辑是初始化一个4乘4的数组&#xff…

论文笔记ColdDTA:利用数据增强和基于注意力的特征融合进行药物靶标结合亲和力预测

ColdDTA发表在Computers in Biology and Medicine 的一篇一区文章 突出 • 数据增强和基于注意力的特征融合用于药物靶点结合亲和力预测。 • 与其他方法相比&#xff0c;它在 Davis、KIBA 和 BindingDB 数据集上显示出竞争性能。 • 可视化模型权重可以获得可解释的见解。 …

并发编程之阻塞队列BlockingQueue实战及其原理分析

1. 阻塞队列介绍 1.1 队列 是限定在一端进行插入&#xff0c;另一端进行删除的特殊线性表。 先进先出(FIFO)线性表。 允许出队的一端称为队头&#xff0c;允许入队的一端称为队尾。

轻松应对数据恢复挑战:雷神笔记本,不同情况不同策略

在数字化时代&#xff0c;数据无疑是我们生活中不可或缺的一部分。无论是重要的工作文件、珍贵的家庭照片&#xff0c;还是回忆满满的视频&#xff0c;一旦丢失&#xff0c;都可能给我们的生活带来诸多不便。雷神笔记本作为市场上备受欢迎的电脑品牌&#xff0c;用户在使用过程…

【JS篇之】异常

前言&#xff1a;在代码编写过程中&#xff0c;最常遇到的就是程序异常。其实异常并非坏事&#xff0c;它可以让开发人员及时发现、定位到错误&#xff0c;提醒我们做正确的事情&#xff0c;甚至在某些时候&#xff0c;我们还会手动抛出异常。 1.异常的分类 在JS中&#xff0…

ABB RobotStudio学习记录(一)新建工作站

RobotStudio新建工作站 最近遇到 虚拟示教器和 Rapid 代码不能控制 视图中机械臂的问题&#xff0c;其实是由于机械臂和工作站不匹配。以下是解决方法。 名称版本Robot Studio6.08 新建一个”空工作站“&#xff1b; 在目标位置新建一个目标文件夹 C:\solution\test&#xff0…

数据交换和异步请求(JSONAjax))

目录 一.JSON介绍1.JSON的特点2.JSON的结构3.JSON的值JSON示例4.JSON与字符串对象转换5.注意事项 二.JSON在Java中的使用1.Javabean to json2.List to json3.Map to JSONTypeToken底层解析 三.Ajax介绍1.介绍2.Ajax经典应用场景 四.Ajax原理示意图1. 传统web应用2.Ajax方法 五.…

平面模型上提取凸凹多边形------pcl

平面模型上提取凸凹多边形 pcl::PointCloud<pcl::PointXYZ>::Ptr PclTool::ExtractConvexConcavePolygons(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud) {pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);p…

java10基础(this super关键字 重写 final关键字 多态 抽象类)

目录 一. this和super关键字 1. this关键字 2. super关键字 二. 重写 三. final关键字 四. 多态 五. 抽象类 1. 抽象方法 2. 抽象类 3. 面向抽象设计 一. this和super关键字 1. this关键字 this 当前对象的引用 this.属性 this.方法名() this() -- 调用构造函数 …

Vue阶段练习:初始化渲染、获取焦点、记账清单

阶段练习主要承接Vue 生命周期-CSDN博客 &#xff0c;学习完该部分内容后&#xff0c;进行自我检测&#xff0c;每个练习主要分为效果显示、需求分析、静态代码、完整代码、总结 四个部分&#xff0c;效果显示和准备代码已给出&#xff0c;我们需要完成“完整代码”部分。 练习…

技术速递|使用 .NET 为 Microsoft AI 构建可扩展网关

作者&#xff1a;Kara Saucerman 排版&#xff1a;Alan Wang Microsoft AI 团队构建了全面的内容、服务、平台和技术&#xff0c;以便消费者在任何设备上、任何地方获取他们想要的信息&#xff0c;并为企业改善客户和员工的体验。我们的团队支持多种体验&#xff0c;包括 Bing、…

Java 线程池 ( Thread Pool )的简单介绍

想象一下&#xff0c;你正指挥着一支超级英雄团队&#xff0c;面对蜂拥而至的敌人&#xff08;任务&#xff09;&#xff0c;不是每次都召唤新英雄&#xff08;创建线程&#xff09;&#xff0c;而是精心调配现有成员&#xff0c;高效应对。这就是Java线程池的魔力&#xff0c;…

毕业就业信息|基于Springboot+vue的毕业就业信息管理系统的设计与实现(源码+数据库+文档)

毕业就业信息管理系统 目录 基于Springboot&#xff0b;vue的毕业就业信息管理系统设计与实现 一、前言 二、系统设计 三、系统功能设计 1学生信息管理 2 公司信息管理 3公告类型管理 4公告信息管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设…

探索GitHub上的GPTs项目:泄露和被破解的GPT提示

GPTs项目是一个在GitHub上由用户linexjlin发起的开源项目&#xff0c;专注于提供泄露的GPT&#xff08;生成式预训练转换器&#xff09;提示。这些提示用于指导和优化AI模型的输出&#xff0c;进而提升代码生成的质量和效率。项目页面提供了丰富的功能和资源&#xff0c;旨在帮…

3D渲染是什么?渲染100邀请码1a12

3D渲染是把3D模型转换为2D图像或动画的过程&#xff0c;涉及到多方面知识&#xff0c;这篇文章我们就来了解下。 1、3D渲染的原理 3D渲染的原理是模拟光线在三维空间中的传播和反射&#xff0c;根据物体在空间中的分布&#xff0c;计算出每个像素的颜色和亮度等数值&#xff…

如果insightface/instantID安装失败怎么办(关于InsightFaceLoader_Zho节点的报错)

可能性有很多&#xff0c;但是今天帮朋友解决问题的时候又收集了一种新的思路。 首先&#xff0c;可以先按照这篇文章里边提到的方法去安装&#xff1a; 【全网最详细】ComfyUI下&#xff0c;Insightface安装指南-聚梦小课堂_insightface如何安装-CSDN博客 其次&#xff0c;…

在Java中如何有效地处理内存泄露

在Java中&#xff0c;处理内存泄露有多种方法&#xff0c;以下是其中三种常见的方法及其原理和适用场景&#xff1a; ## 1. 合理使用垃圾回收机制 Java中的垃圾回收机制&#xff08;Garbage Collection&#xff0c;GC&#xff09;是一种自动化的内存管理技术&#xff0c;它可以…

2005-2021年全国各地级市生态环境注意力/环保注意力数据(根据政府报告文本词频统计)

2005-2021年全国各地级市生态环境注意力/环保注意力数据&#xff08;根据政府报告文本词频统计&#xff09; 2005-2021年全国各地级市生态环境注意力/环保注意力数据&#xff08;根据政府报告文本词频统计&#xff09; 1、时间&#xff1a;2005-2021年 2、范围&#xff1a;2…

嵌入式开发常见概念简介

目录 0. 《STM32单片机自学教程》专栏总纲 API Handle(句柄) 0. 《STM32单片机自学教程》专栏总纲 本文作为专栏《STM32单片机自学教程》专栏其中的一部分&#xff0c;返回专栏总纲&#xff0c;阅读所有文章,点击Link: STM32单片机自学教程-[目录总纲]_stm32 学习-CSD…

Linux变量的认识及环境变量配置详解

文章目录 1、变量的划分2、局部变量3、全局变量4、环境变量4.1、概述4.2、配置临时环境变量4.3、配置永久环境变量4.3.1、用户级配置文件1&#xff09;配置方法一&#xff1a;~/.bashrc文件2&#xff09;配置方法二&#xff1a;~/.profile文件3&#xff09;配置方法三&#xff…