R语言数据探索与分析-碳排放分析预测

# 安装和加载需要的包
install.packages("readxl")
install.packages("forecast")
install.packages("ggplot2")
library(readxl)
library(forecast)
library(ggplot2)# 数据加载和预处理
data <- read_excel("全年数据.xlsx") 
colnames(data) <- c("year", "CO2_Emissions")# 转换year列为日期类型
data$year <- as.Date(as.character(data$year), format="%Y")# 时间序列图绘制
ggplot(data, aes(x = year, y = CO2_Emissions)) +geom_line() +labs(title = "中国工业碳排放量 (年)",x = "年份",y = "二氧化碳排放量") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5))

全国碳排放量

这张图表展示了中国碳排放的时间序列数据,横轴标记为“年份”,时间范围从2005年开始一直到2020年结束。纵轴标记为“碳排放”,表示中国每年的碳排放量。从这个图表中,可以观察到以下趋势和特点:碳排放的显著增长:从2005年开始,中国的碳排放量呈现出明显的增长趋势。这可能与中国在这些年中快速发展和工业化过程中的能源需求增加有关。

人口增长趋势:与碳排放趋势相似,中国的人口数量也在这个时期稳步增长。人口增长可能是碳排放增长的一个主要因素,因为更多的人口需要更多的能源和资源。碳排放的高峰:在图表上可以看到,碳排放量在2014年左右达到了一个高峰。这可能是由于中国政府采取了一些政策措施来减少碳排放,或者与工业结构的变化有关。小幅下降或趋于平稳:在高峰之后,碳排放量在2015年左右出现了一些小幅下降或趋于平稳的迹象。这可能是由于能源效率改进、可再生能源使用增加等因素的影响。增长趋势恢复:然而,随着时间的推移,碳排放的增长趋势似乎又恢复。尽管增长速度可能有所放缓,但仍然是一个值得关注的趋势。

总的来说,这张图表提供了关于中国碳排放和人口增长之间关系的见解。它强调了减少碳排放和可持续发展的重要性,以应对气候变化和环境挑战。这也可能促使政府和社会采取更多的措施来降低碳排放并推动可持续发展。

接下来使用模型自动定阶:

Series: data$CO2_Emissions

ARIMA(2,1,0) with drift

Coefficients:

         ar1      ar2     drift

      1.1907  -0.5293  432.6742

s.e.  0.1882   0.1856  109.8183

sigma^2 = 31708:  log likelihood = -124.58

AIC=257.17   AICc=260.02   BIC=260.94

指定的ARIMA模型是(2,1,0)附带漂移项。表示该模型是一个包含两个自回归项(AR)、一次差分(I - 积分)和零个滑动平均项(MA)的ARIMA模型。

其中:ar1 和 ar2 是第一和第二自回归项的系数。ar1的系数是1.1907,标准误为0.1882;ar2的系数是-0.5293,标准误为0.1856。这些系数表明了前一时期(或前几时期)的数据对当前值的影响。漂移(drift)系数是432.6742,标准误为109.8183,表明有一个正向的线性趋势,即CO2排放量随时间呈上升趋势。sigma^2:模型的方差为31708,这是残差的方差,也就是模型未能解释的变动部分。对数似然值(log likelihood):是-124.58,用于衡量模型拟合数据的好坏。AIC(赤池信息准则):是257.17,AICc(校正后的赤池信息准则)是260.02,BIC(贝叶斯信息准则)是260.94。这些准则越低表明模型越好,通常用于比较不同模型的拟合优度。

# 预测模型
model <- auto.arima(data$CO2_Emissions)
modelforecast_data <- forecast(model, h = 5) # 预测未来5年# 预测结果可视化
plot(forecast_data, main = "碳排放预测")# 模型检验
checkresiduals(model)

# 预测未来5年的

从预测趋势的角度来看,模型显示中国的碳排放量将继续增长。然而,随着时间的推移,置信区间变得越来越宽,这意味着我们对未来的预测变得越来越不确定。这种不确定性可以由多种因素造成

省碳排放量

这张图提供了关于2015年中国各省一氧化碳排放量的重要信息。一氧化碳是一种对人类健康和环境具有潜在危害的气体,因此对其排放量的监测和理解至关重要。

图是中国各省2021年二氧化碳排放量的泡泡图(气泡图)。这种图通常用于显示三个维度的数据:X轴代表一维,Y轴代表第二维,而气泡的大小代表第三维。在这张图中:X轴表示二氧化碳排放量。Y轴是中国的省份,以纵向形式列出。气泡的大小代表排放量的相对大小。

区域差异分析

# 区域差异分析
ggplot(data_long, aes(x = Province, y = CO2_Emissions)) +geom_boxplot() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量差异", x = "省份", y = "二氧化碳排放量")

图可以看出,不同省份的二氧化碳排放量分布差异较大。一些省份,如北京和天津,显示出较窄的四分位数距,这意味着它们的数据点相对集中。其他一些省份,如山西和河北,四分位数距较宽,表明它们的排放量分布较为分散。

时间趋势分析:

从图表中可以观察到以下几点:大部分省份的二氧化碳排放量在2000年到2020年之间呈现上升趋势。有几条折线显示出异常的急剧增长,尤其是那些在2010年后迅速上升的省份,这可能是由于快速工业化、能源消耗增加或其他因素导致的排放量增加。

从热图上可以看出:大部分省份的二氧化碳排放量在这段时间里都有所增长,特别是在2010年之后,许多省份的排放量显著增加。某些省份,如山西、内蒙古、河北和天津的二氧化碳排放量尤其高,这些地区可能是重工业的集中地。...

代码

# 安装和加载需要的包
install.packages("readxl")
install.packages("forecast")
install.packages("ggplot2")
library(readxl)
library(forecast)
library(ggplot2)# 数据加载和预处理
data <- read_excel("data.xlsx") 
colnames(data) <- c("year", "CO2_Emissions")# 转换year列为日期类型
data$year <- as.Date(as.character(data$year), format="%Y")# 时间序列图绘制
ggplot(data, aes(x = year, y = CO2_Emissions)) +geom_line() +labs(title = "中国工业碳排放量 (年)",x = "年份",y = "二氧化碳排放量") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5))# 预测模型
model <- auto.arima(data$CO2_Emissions)
modelforecast_data <- forecast(model, h = 5) # 预测未来5年# 预测结果可视化
plot(forecast_data, main = "碳排放预测")# 模型检验
checkresiduals(model)###个省份数据
# 数据加载和预处理
data <- read_excel("data.xlsx")
colnames(data) <- c("Year", "Beijing", "Tianjin", "Hebei", "Shanxi", "Inner Mongolia", "Liaoning", "Jilin", "Heilongjiang", "Shanghai", "Jiangsu", "Zhejiang", "Anhui", "Fujian", "Jiangxi", "Shandong", "Henan", "Hubei", "Hunan", "Guangdong", "Guangxi", "Hainan", "Chongqing", "Sichuan", "Guizhou", "Yunnan", "Shaanxi", "Gansu", "Qinghai", "Ningxia", "Xinjiang")
data_long <- melt(data, id.vars = "Year", variable.name = "Province", value.name = "CO2_Emissions")# 空间分布分析
# 比如分析2015年的空间分布
data_2015 <- subset(data_long, Year == 2015)
ggplot(data_2015, aes(x = reorder(Province, CO2_Emissions), y = CO2_Emissions)) +geom_bar(stat = "identity") +coord_flip() +labs(title = "2015年各省二氧化碳排放量", x = "省份", y = "二氧化碳排放量") +theme(plot.title = element_text(hjust = 0.5))  # 确保标题居中# 筛选2021年的数据
data_2021 <- subset(data_long, Year == 2021)
# 检查2021年的数据
print(head(data_2021))
summary(data_2021$CO2_Emissions)ggplot(data_2021, aes(x = reorder(Province, CO2_Emissions), y = CO2_Emissions, size = CO2_Emissions)) +geom_point(aes(color = CO2_Emissions), alpha = 0.7) +  # 添加颜色映射到CO2_Emissionsscale_color_viridis_c() +  # 使用viridis颜色方案scale_size_continuous(range = c(1, 20)) +labs(title = "2021年各省二氧化碳排放量气泡图", x = "省份", y = "二氧化碳排放量") +theme_minimal() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))  # 确保标题居中theme(legend.position = "bottom")  # 将图例放置在底部# 区域差异分析
ggplot(data_long, aes(x = Province, y = CO2_Emissions)) +geom_boxplot() +coord_flip() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量差异", x = "省份", y = "二氧化碳排放量")# 时间趋势分析
ggplot(data_long, aes(x = Year, y = CO2_Emissions, group = Province, color = Province)) +geom_line() +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量趋势", x = "年份", y = "二氧化碳排放量")# 转换数据为宽格式(wide format)用于热图分析
data_wide <- dcast(data_long, Year ~ Province, value.var = "CO2_Emissions")# 检查data_wide的列名
print(colnames(data_wide))
print(head(data_wide))# 需要将数据重新转换为长格式
data_long_for_heatmap <- melt(data_wide, id.vars = "Year", variable.name = "Province", value.name = "CO2_Emissions")# 创建热图
ggplot(data_long_for_heatmap, aes(x = Year, y = Province, fill = CO2_Emissions)) +geom_tile() +scale_fill_gradient(low = "blue", high = "red") +theme(plot.title = element_text(hjust = 0.5))+  # 确保标题居中labs(title = "各省份二氧化碳排放量热图", x = "年份", y = "省份")

创作不易,希望大家多多点赞收藏和评论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/325150.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

感知机和神经网络

引入 什么是神经网络&#xff1f; 我们今天学习的神经网络&#xff0c;不是人或动物的神经网络&#xff0c;但是又是模仿人和动物的神经网络而定制的神经系统&#xff0c;特别是大脑和神经中枢&#xff0c;定制的系统是一种数学模型或计算机模型&#xff0c;神经网络由大量的人…

FANUC机器人工具坐标偏移的用法

一、工具坐标偏移的使用场景 在机器人位置不改变的情况下&#xff0c;工业机器人使用默认工具坐标系示教的一系列运动点位&#xff0c;要保持原本点位位置不变的情况下&#xff0c;改变机器人工具坐标的参数&#xff0c;就要用到机器人坐标转化的功能。在FANUC机器人上体现为机…

通过mvn archetype 创建一个spring boot start 工程

mvn archetype https://maven.apache.org/archetype/index.html 遇到的问题 对于想自定义一个spring-boot-start的同学,比如 Springboot自定义Starter启动器 整个过程很繁琐。 定义属性开关增加 spring boot test start插件定义自动装载 spring.factories or org.springfra…

关于一致性,你该知道的事儿(上)

关于一致性&#xff0c;你该知道的事儿&#xff08;上&#xff09; 前言一、缓存一致性二、内存模型一致性三、事务一致性四、分布式事务一致性4.1 分布式系统的一些挑战4.2 关于副本的一些概念4.3 分布式事务之共识问题4. 3.1 PC(two-phase commit, 2PC)4.3.2 Raft 三、后记参…

【牛客】SQL201 查找薪水记录超过15条的员工号emp_no以及其对应的记录次数t

1、描述 有一个薪水表&#xff0c;salaries简况如下&#xff1a; 请你查找薪水记录超过15条的员工号emp_no以及其对应的记录次数t&#xff0c;以上例子输出如下&#xff1a; 2、题目建表 drop table if exists salaries ; CREATE TABLE salaries ( emp_no int(11) NOT N…

python数据分析——pandas数据结构2

参考资料&#xff1a;活用pandas库 导入基础数据 # 导入库 import pandas as pd # 读取数据集 dfpd.read_csv(r"..\data\scientists.csv") df.head() 1、DataFrame DataFrame是Pandas中最常见的对象。可以把它看作python存储电子表格式数据的方式。Series数据结构…

基于单片机的温度控制系统设计(51基础版)-设计说明书

本论文设计了一种基于51单片机的温度控制系统&#xff0c;该系统具备以下主要功能&#xff1a;首先&#xff0c;通过温度传感器实时检测环境温湿度&#xff0c;以获取准确的温度数值。其次&#xff0c;通过按键设置温度阈值&#xff0c;用户可以根据需求自行调整控制温度的上限…

Dragonfly 拓扑的路由算法

Dragonfly 拓扑的路由算法 1. Dragonfly 上的路由 (1)最小路由(2)非最小路由 2. 评估3. 存在问题 (1)吞吐量限制(2)较高的中间延迟 references Dragonfly 拓扑的路由算法 John Kim, William J. Dally 等人在 2008 年的 ISCA 中提出技术驱动、高度可扩展的 Dragonfly 拓扑。而…

杰发科技AC7801——ADC之Bandgap和内部温度计算

0. 参考 电流模架构Bandgap设计与仿真 bandgap的理解&#xff08;内部带隙电压基准&#xff09; ​ ​ 虽然看不懂这些公式&#xff0c;但是比较重要的一句应该是这个&#xff1a;因为传统带隙基准的输出值为1.2V ​ 1. 使用 参考示例代码。 40002000是falsh控制器寄…

从离线到实时:无锡锡商银行基于 Apache Doris 的数据仓库演进实践

作者&#xff1a;武基鹏&#xff0c;无锡锡商银行 大数据技术经理 编辑整理&#xff1a;SelectDB 技术团队 导读&#xff1a;为实现数据资产的价值转化以及全面数字化、智能化的风险管理&#xff0c;无锡锡商银行大数据平台经历从 Hive 离线数据仓库到 Apache Doris 实时数据仓…

鸿蒙ArkUI-X跨平台开发电商应用

一、ArkUI-X 简介 ArkUI-X 是由 OpenHarmony TSC - 跨平台应用开发框架 TSG 所孵化的开源项目,使用ArkUI-X可以让开发者基于一套主代码, 就可以构建支持多平台的精美、高性能应用。目前支持OpenHarmony、HarmonyOS、Android、 iOS,后续会逐步增加更多平台支持。 ArKUI跨平台…

经典权限五张表功能实现

文章目录 用户模块(未使用框架)查询功能实现步骤代码 新增功能实现步骤代码 修改功能实现步骤代码实现 删除功能实现步骤代码实现 用户模块会了&#xff0c;其他两个模块与其类似 用户模块(未使用框架) 查询功能 这里将模糊查询和分页查询写在一起 实现步骤 前端&#xff1…

哈希表(unordered_set、unordered_map)

文章目录 一、unordered_set、unordered_map的介绍二、哈希表的建立方法2.1闭散列2.2开散列&#xff08;哈希桶/拉链法&#xff09; 三、闭散列代码&#xff08;除留余数法&#xff09;四、开散列代码&#xff08;拉链法/哈希桶&#xff09; 一、unordered_set、unordered_map的…

[单机]成吉思汗3_GM工具_VM虚拟机

稀有端游成吉思汗1,2,3单机版虚拟机一键端完整版 本教程仅限学习使用&#xff0c;禁止商用&#xff0c;一切后果与本人无关&#xff0c;此声明具有法律效应&#xff01;&#xff01;&#xff01;&#xff01; 教程是本人亲自搭建成功的&#xff0c;绝对是完整可运行的&#x…

【基于 PyTorch 的 Python 深度学习】6 视觉处理基础:卷积神经网络(1)

前言 文章性质&#xff1a;学习笔记 &#x1f4d6; 学习资料&#xff1a;吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》【ISBN】978-7-111-71880-2 主要内容&#xff1a;根据学习资料撰写的学习笔记&#xff0c;该篇主要介绍了卷积神经网络的卷积层部分。 预&#xff1…

unity ui 同屏

一共有三个摄像机&#xff0c;上屏&#xff0c;下屏 和 类似照相机的ccamera 类似照相机的ccamera的设置&#xff1a; 下屏摄像机设置&#xff1a; 下屏交互的Canvas设置&#xff1a; 新建一个canvas&#xff0c;下面放上rawimage&#xff1a; 如果下屏不想显示的内容&#xf…

2024蓝桥杯RSA-Theorem

方法1&#xff1a;直接使用工具yafu解题 yafu的使用方法 安装&#xff1a;解压后直接使用即可&#xff0c;在文件包内&#xff0c;执行命令终端&#xff0c;输入命令行 1、如果数比较小&#xff0c;进入该文件的目录后可以直接使用: yafu-x64 factor(n) 如果是powershell&…

Maven 的仓库、周期和插件

优质博文&#xff1a;IT-BLOG-CN 一、Maven 仓库 在Maven的世界中&#xff0c;任何一个依赖、插件或者项目构建的输出&#xff0c;都可以称为构建。Maven在某个统一的位置存储所有项目的共享的构建&#xff0c;这个统一的位置&#xff0c;我们就称之为仓库。任何的构建都有唯一…

计算机视觉——基于改进UNet图像增强算法实现

1. 引言 在低光照条件下进行成像非常具有挑战性&#xff0c;因为光子计数低且存在噪声。高ISO可以用来增加亮度&#xff0c;但它也会放大噪声。后处理&#xff0c;如缩放或直方图拉伸可以应用&#xff0c;但这并不能解决由于光子计数低导致的低信噪比&#xff08;SNR&#xff…

深度学习——前馈全连接神经网络

前馈全连接神经网络 1.导入需要的工具包2.数据导入与数据观察&#xff08;1&#xff09;读取csv的文件信息&#xff1a;&#xff08;2&#xff09;训练数据前5行&#xff08;3&#xff09;打印第一个图&#xff08;4&#xff09;观察数据中的信息&#xff08;5&#xff09;查看…