Python-VBA函数之旅-tuple函数

目录

一、tuple函数的常见应用场景

二、tuple函数使用注意事项

三、如何用好tuple函数?

1、tuple函数:

1-1、Python:

1-2、VBA:

2、推荐阅读:

个人主页: https://myelsa1024.blog.csdn.net/

一、tuple函数的常见应用场景

        在Python中,tuple()函数的主要应用场景涉及需要不可变序列类型的情况,常见的应用场景有:

1、作为字典的键:由于元组是不可变的,它们可以用作字典的键;而列表由于是可变的,不能用作字典的键。

2、存储异质的元素集合:元组可以包含不同类型的元素,这使得它们成为存储异质性数据集合的理想选择。

3、返回多个值: 函数可以使用元组来返回多个值,这在许多情况下都很有用。

4、函数参数的打包和解包:元组在函数参数打包和解包方面非常有用,你可以使用`*`操作符将元组解包为函数的位置参数,或者使用`**`操作符将字典解包为函数的关键字参数,反过来,你也可以使用`*`将可迭代对象打包为元组,并作为函数参数传递。

5、元组推导式(Tuple Comprehension):虽然Python中没有直接称为“元组推导式”的语法结构,但你可以使用生成器表达式和tuple()函数来创建元组,这通常用于从其他可迭代对象生成元组。

6、表示记录或点的坐标:元组可以用来表示具有多个属性的记录或点的坐标。

7、作为命名元组:虽然这不是直接使用tuple()函数,但collections.namedtuple是一个高阶用法,它允许你创建具有名称的元组子类,这可以使元组更加易于理解和使用。

8、数据库或API交互:当与数据库或外部API交互时,经常需要以元组的形式接收或发送数据。例如,数据库查询的结果通常可以表示为元组的列表。

9、数据分析和科学计算:在数据分析、科学计算和机器学习等领域,元组经常用于表示多维数据点或向量。例如,在NumPy库中,尽管更常见的是使用NumPy数组,但元组也经常用于表示形状、索引等。

        tuple()函数虽然被称为函数,但实际上是一个不可变的序列类型,特别是在需要不可变序列或需要同时存储多个相关值的情况下,tuple()函数提供了一种从其他可迭代对象创建元组的简便方法。

二、tuple函数使用注意事项

        在Python中,tuple函数用于创建一个元组(tuple),元组是一个不可变的序列类型,可以包含任意类型的元素,并且一旦创建就不能被修改(尽管元组中的元素本身可能是可变的,比如列表或字典),使用tuple()函数时需注意以下几点:

1、元素类型:元组可以包含任何Python数据类型,包括整数、浮点数、字符串、列表、字典、元组本身等。

2、不可变性:元组一旦创建,其内容就不能被修改,这意味着你不能向元组中添加、删除或替换元素。

3、元组只有一个元素时的写法:如果你想要创建一个只包含一个元素的元组,你需要在该元素后面加上一个逗号,以区分它与括号内的普通表达式。

4、空元组:空元组可以用两个不包含任何元素的圆括号来表示。

5、性能考虑:由于元组是不可变的,它们在某些情况下可能比列表更有效率,因为它们不需要为可能的修改预留空间,然而,这也意味着在某些需要频繁修改序列的情况下,使用列表可能会更合适。

6、作为字典的键:由于元组是不可变的,它们可以作为字典的键;而列表由于是可变的,因此不能作为字典的键。

7、与list()函数的对比:tuple()和list()函数都是用于创建序列类型的,但它们的特性不同:list()创建的列表是可变的,而tuple()创建的元组是不可变的,选择使用哪个函数取决于你的具体需求。

8、解包:你可以使用多个变量来“解包”一个元组,这样每个变量都会获得元组中的一个元素。

三、如何用好tuple函数?

        要用好Python中的tuple()函数,请你遵循以下建议:

1、明确元组的用途:元组主要用于存储一组不可变的值,如果你需要存储一组值,并且这些值在程序的整个生命周期中都不会改变,那么元组是一个很好的选择。

2、使用元组作为字典的键:由于元组是不可变的,所以它们可以用作字典的键,这允许你基于多个值来索引字典。

3、利用元组的不可变性:由于元组是不可变的,它们可以作为函数的默认参数值,因为不用担心函数内部会修改它们,此外,当你想传递一组值给函数,并且不希望这些值在函数内部被修改时,元组也是一个好选择。

4、将序列转换为元组:如果你有一个列表、集合或其他可迭代对象,并且想要一个不可变的版本,你可以使用tuple()函数将其转换为元组。

5、使用元组解包:元组解包允许你将元组的元素分配给多个变量,这在处理返回多个值的函数时特别有用。

6、与列表的选择:虽然元组和列表都用于存储序列,但它们之间有一些关键差异:列表是可变的,而元组是不可变的。因此,在选择使用哪个时,请考虑是否需要修改元素?如果你不需要修改元素,并且希望提高代码的可读性和安全性(通过防止意外修改),那么元组可能是更好的选择。

7、避免不必要的元组:尽管元组在某些情况下很有用,但也要避免过度使用它们。例如,如果你只需要存储一个值,并且该值不是用作字典的键或需要不可变性的其他情况,那么使用一个简单的变量可能就足够了。

8、使用命名元组(namedtuples):在需要为元组的元素提供有意义的名称时,可以使用collections.namedtuple,命名元组允许你以更具可读性的方式访问元组的元素,而不是使用索引。

1、tuple函数:
1-1、Python:
# 1.函数:tuple
# 2.功能:用于将一个序列转换为元组
# 3.语法:tuple([iterable])
# 4.参数:iterable,表示可以转换为元组的数据
# 5.返回值:返回一个元组,若不传入任何参数,则返回一个空元组
# 6.说明:
# 6-1、iterable类型可以是range对象、字符串、列表、字典、元组或其他可迭代类型的数据;如果参数是元组,参数则会被原样返回
# 7.示例:
# 用dir()函数获取该函数内置的属性和方法
print(dir(tuple))
# ['__add__', '__class__', '__class_getitem__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__',
# '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__',
# '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__',
# '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']# 用help()函数获取该函数的文档信息
help(tuple)# 应用一:作为字典的键
# 创建一个字典,其中元组作为键
my_dict = {(1, 2, 3): 'value1',('a', 'b', 'c'): 'value2',(True, False, True): 'value3',# 注意:元组内的元素也必须是可哈希的(例如,列表就不行,因为列表是可变的)# 例如,下面的元组不能用作字典的键,因为它包含了一个列表# ((1, 2), [3, 4]): 'value_invalid'  # 这会抛出一个TypeError
}
# 访问字典中的值
print(my_dict[(1, 2, 3)])
print(my_dict[('a', 'b', 'c')])
print(my_dict[(True, False, True)])
# 尝试访问不存在的键会抛出KeyError
# print(my_dict[(4, 5, 6)])  # 这会抛出一个KeyError
# 添加一个新的键值对到字典中
my_dict[(4, 5, 6)] = 'value4'
print(my_dict[(4, 5, 6)])
# 遍历字典
for key, value in my_dict.items():print(f"Key: {key}, Value: {value}")
# 删除一个键值对
del my_dict[(1, 2, 3)]
print(my_dict)
# value1
# value2
# value3
# value4
# Key: (1, 2, 3), Value: value1
# Key: ('a', 'b', 'c'), Value: value2
# Key: (True, False, True), Value: value3
# Key: (4, 5, 6), Value: value4
# {('a', 'b', 'c'): 'value2', (True, False, True): 'value3', (4, 5, 6): 'value4'}# 应用二:存储异质的元素集合
# 使用字面量创建一个包含异质元素的元组
heterogeneous_tuple = (1, 'two', 3.0, [4, 5, 6], {'seven': 7})
# 使用tuple()函数从列表或其他可迭代对象创建一个元组
heterogeneous_list = [1, 'two', 3.0, [4, 5, 6], {'seven': 7}]
heterogeneous_tuple_from_list = tuple(heterogeneous_list)
# 打印元组
print("使用字面量创建的元组:", heterogeneous_tuple)
print("从列表创建的元组:", heterogeneous_tuple_from_list)
# 访问元组中的元素
print("第一个元素(整数):", heterogeneous_tuple[0])
print("第二个元素(字符串):", heterogeneous_tuple[1])
print("第三个元素(浮点数):", heterogeneous_tuple[2])
print("第四个元素(列表):", heterogeneous_tuple[3])
print("第五个元素(字典):", heterogeneous_tuple[4])
# 尝试修改元组中的元素(将会失败,因为元组是不可变的)
# heterogeneous_tuple[0] = 2  # 这会抛出一个 TypeError
# 尝试修改元组中的列表元素(这将成功,因为列表本身是可变的)
heterogeneous_tuple[3].append(7)  # 修改元组中的列表
print("修改后的第四个元素(列表):", heterogeneous_tuple[3])
# 尝试修改元组中的字典元素(这也将成功,因为字典本身是可变的)
heterogeneous_tuple[4]['eight'] = 8
print("修改后的第五个元素(字典):", heterogeneous_tuple[4])
# 使用字面量创建的元组: (1, 'two', 3.0, [4, 5, 6], {'seven': 7})
# 从列表创建的元组: (1, 'two', 3.0, [4, 5, 6], {'seven': 7})
# 第一个元素(整数): 1
# 第二个元素(字符串): two
# 第三个元素(浮点数): 3.0
# 第四个元素(列表): [4, 5, 6]
# 第五个元素(字典): {'seven': 7}
# 修改后的第四个元素(列表): [4, 5, 6, 7]
# 修改后的第五个元素(字典): {'seven': 7, 'eight': 8}# 应用三:返回多个值
def return_multiple_values_with_tuple():# 使用tuple()函数创建一个元组并返回return tuple([1, 'two', 3.0])
# 调用函数并解包元组
a, b, c = return_multiple_values_with_tuple()
# 打印结果
print("a:", a)
print("b:", b)
print("c:", c)
# 如果你不想解包元组,可以直接接收整个元组
result_tuple = return_multiple_values_with_tuple()
print("result_tuple:", result_tuple)
# a: 1
# b: two
# c: 3.0
# result_tuple: (1, 'two', 3.0)# 应用四:函数参数的打包和解包
# 示例1:打包
def my_function(a, b, c):print(f"a: {a}, b: {b}, c: {c}")
# 使用元组字面量打包参数
params = (1, 'two', 3.0)
# 使用*操作符解包元组参数并传递给函数
my_function(*params)
# a: 1, b: two, c: 3.0# 示例2:解包
def unpack_tuple(params):# 手动解包元组a, b, c = paramsprint(f"a: {a}, b: {b}, c: {c}")
# 创建一个元组
params = (1, 'two', 3.0)
# 调用函数并传递元组
unpack_tuple(params)
# a: 1, b: two, c: 3.0# 应用五:元组推导式
# 示例1:使用tuple()函数和生成器表达式
# 使用生成器表达式和tuple()函数创建一个元组
my_tuple = tuple(x * x for x in range(1, 8))
print(my_tuple)
# (1, 4, 9, 16, 25, 36, 49)# 示例2:使用元组推导式
# 使用元组推导式创建一个元组
my_tuple = (x * x for x in range(1, 8))  # 注意:这里实际上是一个生成器表达式,不是元组推导式
print(tuple(my_tuple))  # 我们需要将生成器转换为元组以打印结果
# 真正的元组推导式(但这种写法在Python中并不存在,因为它会报错)
# my_tuple = (x * x for x in range(1, 4))  # 这会创建一个生成器,而不是元组
# 要得到元组,我们需要将其转换为元组,如上面的例子所示
# 但如果我们想要立即得到一个元组,我们可以使用圆括号和条件表达式(不是推导式)
my_immediate_tuple = tuple(x * x for x in [1, 2, 3, 4, 5, 6, 7])  # 这里使用了列表而不是范围,但立即转换为元组
print(my_immediate_tuple)
# (1, 4, 9, 16, 25, 36, 49)
# (1, 4, 9, 16, 25, 36, 49)# 应用六:表示记录或点的坐标
# 示例1:二维坐标点
# 创建一个表示二维坐标点的元组
point_2d = tuple((1, 2))  # 也可以直接写为 point_2d = (1, 2)
# 访问坐标点的值
x = point_2d[0]
y = point_2d[1]
print(f"二维坐标点: ({x}, {y})")
# 二维坐标点: (1, 2)# 示例2:三维坐标点
# 创建一个表示三维坐标点的元组
point_3d = tuple((1, 2, 3))  # 也可以直接写为 point_3d = (1, 2, 3)
# 访问坐标点的值
x = point_3d[0]
y = point_3d[1]
z = point_3d[2]
print(f"三维坐标点: ({x}, {y}, {z})")
# 三维坐标点: (1, 2, 3)# 示例3:从列表转换为元组
# 有一个表示坐标的列表
coord_list = [4, 5, 6]
# 使用tuple()函数将列表转换为元组
point_from_list = tuple(coord_list)
# 访问坐标点的值
x = point_from_list[0]
y = point_from_list[1]
z = point_from_list[2]
print(f"从列表转换的坐标点: ({x}, {y}, {z})")
# 从列表转换的坐标点: (4, 5, 6)# 应用七:作为命名元组
from collections import namedtuple
# 定义一个命名元组类型,用于表示一个点
Point = namedtuple('Point', ['x', 'y'])
# 创建一个命名元组实例
p = Point(1, 2)
# 访问命名元组的属性
print(p.x)  # 输出: 1
print(p.y)  # 输出: 2
# 命名元组也支持解包到单独的变量中
x, y = p
print(x)  # 输出: 1
print(y)  # 输出: 2
# 命名元组是不可变的,尝试修改属性会抛出异常
# p.x = 3  # 这会抛出一个 AttributeError
# 你可以像普通元组一样对命名元组进行迭代
for coord in p:print(coord)  # 输出: 1, 然后输出: 2
# 你还可以将命名元组转换为普通元组或列表
print(tuple(p))  # 输出: (1, 2)
print(list(p))  # 输出: [1, 2]
# 1
# 2
# 1
# 2
# 1
# 2
# (1, 2)
# [1, 2]# 应用八:数据库或API交互
# 示例1:使用tuple()处理从数据库查询结果中获取的数据
import sqlite3
# 连接到SQLite数据库(仅为示例)
conn = sqlite3.connect('example.db')
cursor = conn.cursor()
# 执行查询
cursor.execute("SELECT id, name FROM users")
# 从查询结果中获取所有行,每行都是一个元组(SQLite的默认行为)
rows = cursor.fetchall()
# 假设我们想将结果转换为命名元组以便于访问
from collections import namedtuple
User = namedtuple('User', ['id', 'name'])
# 使用列表推导式将普通元组转换为命名元组
users = [User(*row) for row in rows]
# 现在我们可以像访问对象属性一样访问数据
for user in users:print(f"ID: {user.id}, Name: {user.name}")
# 关闭数据库连接
cursor.close()
conn.close()# 示例2:一个假设的API交互示例,其中使用tuple()打包参数
import requests
# 假设有一个API需要元组格式的参数(这在实际中很少见)
# 但为了示例,我们假设它需要一对(x, y)坐标
api_url = 'https://api.example.com/coordinates'
# 使用tuple()打包坐标
coordinates = (10, 24)
# 构造请求(但注意,大多数API会期望JSON或表单编码的数据)
# 这里我们假设API接受URL中的查询参数
response = requests.get(f'{api_url}?x={coordinates[0]}&y={coordinates[1]}')
# 处理响应...
if response.status_code == 200:print(response.json())
else:print(f"Error: {response.status_code}")# 应用九:数据分析和科学计算
# 示例1:使用元组存储多维数据点
# 创建一个三维数据点的元组
point_3d = (1.0, 2.0, 3.0)
# 访问元组中的元素
x, y, z = point_3d
print(f"X坐标: {x}, Y坐标: {y}, Z坐标: {z}")
# X坐标: 1.0, Y坐标: 2.0, Z坐标: 3.0# 示例2:使用元组作为字典的键(在数据分析中)
# 创建一个字典,其中元组作为键,值表示数据点的某种属性
data_points = {(1, 2): "A点",(3, 4): "B点",(5, 6): "C点"
}
# 访问字典中的值
print(data_points[(1, 2)])  # 输出: A点
# 遍历字典
for key, value in data_points.items():print(f"点 {key} 的属性是: {value}")
# A点
# 点 (1, 2) 的属性是: A点
# 点 (3, 4) 的属性是: B点
# 点 (5, 6) 的属性是: C点# 示例3:与 NumPy 数组结合使用
import numpy as np
# 创建一个 NumPy 数组
arr = np.array([[1, 2], [3, 4], [5, 6]])
# 假设我们想找到某行或某列的最大值,并将其与索引一起存储为元组
max_values = [(np.argmax(row), np.max(row)) for row in arr]
# 打印结果
for index, value in max_values:print(f"在第 {index} 列的最大值是: {value}")# 注意:这里的索引和值是以元组形式存储的,但索引本身也可以是一个元组(对于多维数组)
# 在第 1 列的最大值是: 2
# 在第 1 列的最大值是: 4
# 在第 1 列的最大值是: 6# 示例4:使用元组存储统计摘要
import statistics
# 假设我们有一组数据
data = [3, 5, 6, 8, 10, 10, 11, 24]
# 计算均值和标准差,并将它们存储在一个元组中
stats = (statistics.mean(data), statistics.stdev(data))
# 打印统计摘要
print(f"均值: {stats[0]}, 标准差: {stats[1]}")
# 均值: 9.625, 标准差: 6.435115716575289
1-2、VBA:
略,待后补。
2、推荐阅读:

2-1、Python-VBA函数之旅-list()函数

Python算法之旅:Algorithms

Python函数之旅:Functions

个人主页: https://myelsa1024.blog.csdn.net/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327014.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

共赴科技盛会“2024南京智博会”11月在南京国际博览中心召开

2024年,南京这座历史悠久的文化名城迎来了一场科技与智慧交织的盛会——南京智博会|南京国际智慧城市、物联网、大数据。本次博览会以智慧城市、人工智能、消费电子、物联网、大数据为主题,汇聚了全球各地的智能科技精英,共同探讨智慧城市建设…

大学c语言基础很差,能不能学51单片机?会不会很困难?

开始前我分享下我的经历,我刚入行时遇到一个好公司和师父,给了我机会,一年时间从3k薪资涨到18k的, 我师父给了一些51单片机学习方法和资料,让我不断提升自己,感谢帮助过我的人, 如大家和我一样…

HTML静态网页成品作业(HTML+CSS+JS)——华为商城网页(1个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现首页图片切换轮播效果,共有1个页面…

IT行业现状与未来趋势分析

IT行业现状与未来趋势显示出持续的活力和变革,以下是上大学网(www.sdaxue.com)关于IT行业现状与未来趋势分析,供大家参考。 当前现状: 市场需求持续增长:随着信息时代的深入发展,各行各业对信息…

k8s endpoint

Endpoint Service 并不是和 pod 直接相连的,Endpoint 介于两者之间。Endpoint 资源就是暴露一个服务的 IP 地址和端口的列表。 虽然在 spec 服务中定义了 pod 选择器,但在重定向传入连接时不会直接使用它。选择器用于构建 IP 和端口列表,然…

材料物理 笔记-8

原内容请参考哈尔滨工业大学何飞教授:https://www.bilibili.com/video/BV18b4y1Y7wd/?p12&spm_id_frompageDriver&vd_source61654d4a6e8d7941436149dd99026962 或《材料物理性能及其在材料研究中的应用》(哈尔滨工业大学出版社) ——…

OpenCV中的模块:点云配准

点云配准是点云相关的经典应用之一。配准的目的是估计两个点云之间位姿关系从而完成两者对应点之间的对齐/对应,因而在英文中又叫“align”、“correspondence”。笔者曾经是基于OpenCV进行三维重建的,并且从事过基于深度学习的6DoF位置估计等工作。在这些工作中,除了重建点…

org.hsqldb.jdbcDriver 类,导致 ClassNotFoundException 异常如何解决?

确保JDBC驱动包存在:检查系统是否已经安装了HSQLDB JDBC驱动。如果没有安装或驱动没有正确放置在类路径中,需要下载并添加它。你可以从 HSQLDB官网 下载JDBC驱动包。 添加JDBC驱动到类路径:将下载的HSQLDB JDBC驱动(通常是一个JA…

uniapp实现下拉刷新效果-uniapp原生接口

onPullDownRefresh | uni-app官网 1、需要在 pages.json 里,找到的当前页面的pages节点,并在 style 选项中开启 enablePullDownRefresh 2、生命周期中添加onPullDownRefresh,下拉时获取数据 3、处理完数据后,停止下拉效果stopPul…

腐烂的橘子BFS

题目: 腐烂的橘子 在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一: 值 0 代表空单元格; 值 1 代表新鲜橘子; 值 2 代表腐烂的橘子。 每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子…

如何把学浪上的视频保存到电脑

在这个信息爆炸的时代,知识的获取从未如此便捷,而学浪平台正是这股知识浪潮中的一艘航船。但是,当网络信号如同海上的风浪般变幻莫测,你是否曾渴望拥有一片宁静的港湾,让那些宝贵的学习资源得以永久停泊?今…

【C++】再识构造函数:初始化列表新方式

欢迎来到CILMY23的博客 🏆本篇主题为: 再识构造函数:初始化列表新方式 🏆个人主页:CILMY23-CSDN博客 🏆系列专栏:Python | C | C语言 | 数据结构与算法 | 贪心算法 | Linux 🏆感…

ubuntu18.04的安装Anaconda步骤

参考:http://t.csdnimg.cn/7KX4p 这个链接写的很全,我主要记以下自己的步骤 1https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 这个链接下载的Anaconda3-2023.03-0-Linux-x86_64.sh 然后进入下载的目录, bash Anaconda3-2023.0…

SpringBoot集成Seata分布式事务OpenFeign远程调用

Docker Desktop 安装Seata Server seata 本质上是一个服务,用docker安装更方便,配置默认:file docker run -d --name seata-server -p 8091:8091 -p 7091:7091 seataio/seata-server:2.0.0与SpringBoot集成 表结构 项目目录 dynamic和dyna…

用户登录认证和权限授权(SpringSecurity、JWT、session)

文章目录 前言一、登录认证1. 问题引入2. Session2.1 实现原理2.2 过滤器Filter2.3 上下文对象 3. JWT3.2 实现步骤3.3 拦截器 HandlerInterceptorAdapter3.4 上下文对象 4. Session VS JWT 二、权限授权1. 权限类型1.1 页面权限(菜单项权限)1.2 ACL模型…

C++入门必读-Qt设计与运行界面不一致问题

界面不一致问题 在Qt设计界面中, 会经常出现设计的窗口和实际运行窗口布置问题。如下图所示,设计界面大小可以调整,但是运行界面的默认是一定大小。 问题解决方案 在我们的主函数(main)中添加这么一段代码,注意Qt版本大…

centos7中如何全局搜索一下nginx的配置文件?

在CentOS 7中搜索Nginx的配置文件,你可以使用一些常用的命令行工具,比如find、grep等。这些工具可以帮助你在文件系统中查找文件,也可以用来查找Docker容器内部的文件,只要你知道如何访问容器的文件系统。 1. 搜索系统中的Nginx配…

石墨烯材料商汉烯科技授权世强硬创,代理产品具备高导热/导电特点

近日,武汉汉烯科技有限公司(下称“汉烯科技”,英文:HANXI TECH)与世强先进(深圳)科技股份有限公司(下称“世强先进”)达成授权代理合作,面向锂电新能源、电子…

【循环程序设计-谭浩强适配】(适合专升本、考研)

无偿分享学习资料,需要的小伙伴评论区或私信dd。。。 无偿分享学习资料,需要的小伙伴评论区或私信dd。。。 无偿分享学习资料,需要的小伙伴评论区或私信dd。。。 完整资料如下:纯干货、纯干货、纯干货!!…

Java入门基础学习笔记21——Scanner

在程序中接收用户通过键盘输入的数据: 需求: 请在程序中,提示用户通过键盘输入自己的姓名、年龄、并能在程序中收到这些信息,怎么解决? Java已经写好了实现程序,我们调用即可。 API:Applicat…