目录
1. 摄像头简介
2. OV7725 摄像头简介
3. OV7725 引脚
4. OV7725 功能框架图
5. SCCB时序
5.1 SCCB 的起始、停止信号及数据有效性
5.2 SCCB 数据读写过程
1. 摄像头简介
在各类信息中,图像含有最丰富的信息,作为机器视觉领域的核心部件,摄像头被广泛地应用在安防、探险以及车牌检测等场合。
摄像头按输出信号的类型来看可以分为数字摄像头和模拟摄像头,数字摄像头跟模拟摄像头区别在于:
①输出信号类型:数字摄像头输出信号为数字信号,模拟摄像头输出信号为标准的模拟信号。
②接口类型:数字摄像头有 usb 接口(比如常见的 pc 端免驱摄像头)、IEE1394 火线接口(由苹果公司领导的开发联盟开发的一种高速度传送接口,数据传输率高达 800Mbps)、千兆网接口(网络摄像头)。模拟摄像头多采用 AV 视频端子(信号线+地线)或 S-VIDEO(即莲花头--SUPER VIDEO,是一种五芯的接口,由两路视频亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成)。
③分辨率:模拟摄像头的感光器件,其像素指标一般维持在 752(H)*582(V)左右的水平,像素数一般情况下维持在 41W 左右。数字摄像头分辨率一般从数十万到数百万甚至数千万。但这并不能说明数字摄像头的成像分辨率就比模拟摄像头的高,原因在于模拟摄像头输出的是模拟视频信号,一般直接输入至电视或监视器,其感光器件的分辨率与电视信号的扫描数呈一定的换算关系,图像的显示介质已经确定,因此模拟摄像头的感光器件分辨率不是不能做高,而是依据于实际情况没必要做这么高。
按照摄像头图像传感器材料构成来看可以分为 CCD 和 CMOS。现在智能手机的摄像头绝大部分都是 CMOS 类型的数字摄像头。对于二者的区别:
①成像材料:CCD 与 CMOS 的名称跟它们成像使用的材料有关,CCD 是“电荷耦合器件”(ChargeCoupled Device)的简称。
而 CMOS 是“互补金属氧化物半导体”(Complementary MetalOxide Semiconductor)的简称。
②功耗:由于 CCD 的像素由 MOS 电容构成,读取电荷信号时需使用电压相当大(至少 12V)的二相或三相或四相时序脉冲信号,才能有效地传输电荷。因此 CCD 的取像系统除了要有多个电源外,其外设电路也会消耗相当大的功率。有的 CCD 取像系统需消耗2~5W 的功率。而 CMOS 光电传感器件只需使用一个单电源 5V 或 3V,耗电量非常小,仅为 CCD 的 1/8~1/10,有的 CMOS 取像系统只消耗 20~50mW 的功率。
③成像质量:CCD 传感器件制作技术起步早,技术成熟,采用 PN 结或二氧化硅(sio2)隔离层隔离噪声,所以噪声低,成像质量好。与 CCD 相比,CMOS 的主要缺点是噪声高及灵敏度低,不过现在随着 CMOS 电路消噪技术的不断发展,为生产高密度优质的 CMOS传感器件提供了良好的条件,现在的 CMOS 传感器已经占领了大部分的市场,主流的单反相机、智能手机都已普遍采用 CMOS 传感器。
2. OV7725 摄像头简介
该摄像头主要由镜头、图像传感器、板载电路、FIFO 缓存及下方的信号引脚组成。镜头部件包含一个镜头座和一个可旋转调节距离的凸透镜,通过旋转可以调节焦距,正常使用时,镜头座覆盖在电路板上遮光,光线只能经过镜头传输到正中央的图像传感器,它采集光线信号,采集得的数据被缓存到摄像头背面的 FIFO 缓存中,然后外部器件通过下方的信号引脚获取拍摄得到的图像数据。
若拆开摄像头座,在摄像头的正下方可看到 PCB 板上的一个方形器件,它是摄像头的核心部件,型号为 OV7725 的 CMOS 类型数字图像传感器。该传感器支持输出最大为 30 万像素的图像 (640x480 分辨率),它的体积小,工作电压低,支持使用 VGA 时序输出图像数据,输出图像的数据格式支持 YUV(422/420)、YCbCr422 以及 RGB565 格式。它还可以对采集得的图像进行补偿,支持伽玛曲线、白平衡、饱和度、色度等基础处理。
3. OV7725 引脚
OV7725 传感器采用 BGA 封装,它的前端是采光窗口,引脚都在背面引出。
图中的非彩色部分是电源相关的引脚,彩色部分是主要的信号引脚。
管脚名称 | 管脚类型 | 管脚描述 |
RSTB | 输入 | 系统复位管脚,低电平有效 |
PWDN | 输入 | 掉电 / 省电模式 ( 高电平有效 ) |
HREF | 输出 | 行同步信号 |
VSYNC | 输出 | 场同步信号 |
PCLK | 输出 | 像素时钟 |
XCLK | 输入 | 系统时钟输入端口 |
SCL | 输入 | SCCB 总线的时钟线 |
SDA | I/O | SCCB 总线的数据线 |
D0 … D9 | 输出 | 像素数据端口 |
4. OV7725 功能框架图
找到OV7725规格书如下图,其中框住部分是 OV7725 的控制寄存器,它根据这些寄存器配置的参数来运行,而这些参数是由外部控制器通过 SCL 和 SDA 引脚写入的,SCL 与 SDA 使用的通讯协议 SCCB 跟 I2C 十分类似,在 STM32 中我们完全可以直接用 I2C 硬件外设来控制。
找到如下位置,包含了 OV7725 的通信、控制信号及外部时钟,其中 PCLK、HREF 及VSYNC 分别是像素同步时钟、行同步信号以及帧同步信号,这与液晶屏控制中的VGA 信号是很类似的。RSTB 引脚为低电平时,用于复位整个传感器芯片,PWDN用于控制芯片进入低功耗模式。注意最后的一个 XCLK 引脚,它跟 PCLK 是完全不同的,XCLK 是用于驱动整个传感器芯片的时钟信号,是外部输入到 OV7725 的信号;而 PCLK 是 OV7725 输出数据时的同步信号,它是由 OV7725 输出的信号。XCLK 可以外接晶振或由外部控制器提供,若要类比 XCLK 之于 OV7725 就相当于 HSE 时钟输入引脚与 STM32 芯片的关系,PCLK 引脚可类比 STM32 的 I2C 外设的 SCL 引脚。
找到如下位置,是感光矩阵,光信号在这里转化成电信号,经过各种处理,这些信号存储成由一个个像素点表示的数字图像。
找到如下位置,包含了 DSP 处理单元,它会根据控制寄存器的配置做一些基本的图像处理运算。这部分还包含了图像格式转换单元及压缩单元,转换出的数据最终通过D0-D9 引脚输出,一般来说我们使用 8 根据数据线来传输,这时仅使用 D2-D9 引脚。
5. SCCB时序
5.1 SCCB 的起始、停止信号及数据有效性
这一个可以等价于IIC通讯,只是改了一下名字:
①起始信号:在 SCL(图中为 SIO_C)为高电平时,SDA(图中为 SIO_D)出现一个下降沿,则 SCCB 开始传输。
②停止信号:在 SCL 为高电平时,SDA 出现一个上升沿,则 SCCB 停止传输。
③数据有效性:除了开始和停止状态,在数据传输过程中,当 SCL 为高电平时,必须保证 SDA 上的数据稳定,也就是说,SDA 上的电平变换只能发生在 SCL 为低电平的时候,SDA 的信号在 SCL 为高电平时被采集。
5.2 SCCB 数据读写过程
在 SCCB 协议中定义的读写操作与 I2C 也是一样的,只是换了一种说法。它定义了两种写操作,即三步写操作和两步写操作。三步写操作可向从设备的一个目的寄存器中写入数据。在三步写操作中,第一阶段发送从设备的 ID 地址+W 标志(等于 I2C 的设备地址:7 位设备地址+读写方向标志),第二阶段发送从设备目标寄存器的 8 位地址,第三阶段发送要写入寄存器的 8 位数据。图中的“X”数据位可写入 1 或 0,对通讯无影响。
而两步写操作没有第三阶段,即只向从器件传输了设备 ID+W 标志和目的寄存器的地址。两步写操作是用来配合后面的读寄存器数据操作的,它与读操作一起使用,实现 I2C 的复合过程。
两步读操作,它用于读取从设备目的寄存器中的数据。在第一阶段中发送从设备的设备 ID+R 标志(设备地址+读方向标志)和自由位,在第二阶段中读取寄存器中的 8 位数据和写 NA 位(非应答信号)。由于两步读操作没有确定目的寄存器的地址,所以在读操作前,必需有一个两步写操作,以提供读操作中的寄存器地址。