YOLOv5训练长方形图像详解

文章目录

  • YOLOv5训练长方形图像详解
    • 一、引言
    • 二、数据集准备
      • 1、创建文件夹结构
      • 2、标注图像
      • 3、生成标注文件
    • 三、配置文件
      • 1、创建数据集配置文件
      • 2、选择模型配置文件
    • 四、训练模型
      • 1、修改训练参数
      • 2、开始训练
    • 五、使用示例
      • 1、测试模型
      • 2、评估模型
    • 六、总结

YOLOv5训练长方形图像详解

在这里插入图片描述

一、引言

YOLOv5 是一种高效的目标检测算法,广泛应用于各种图像识别任务。然而,当处理长方形图像时,可能会遇到一些特殊问题,如图像尺寸不匹配、标注不准确等。本文将详细介绍如何在 YOLOv5 中训练长方形图像,确保模型能够准确地检测和识别目标。

二、数据集准备

1、创建文件夹结构

首先,需要在 YOLOv5 根目录下创建一个文件夹 VOCData,并在其中创建以下子文件夹:

  • images:存放待标注的图像文件(JPG格式)。
  • Annotations:存放标注后的文件(采用 XML 格式)。
VOCData/
├── images/         # 存放图像文件
├── Annotations/    # 存放标注文件

2、标注图像

使用在线标注工具如 MAKE SENSE 进行标注。标注完成后,将标注文件保存为 XML 格式,并存放在 Annotations 文件夹中。

3、生成标注文件

创建 voc_label.py 文件,将训练集、验证集、测试集生成 YOLO 格式的标注文件,并将数据集路径导入到 train.txtval.txt 文件中。代码如下:

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["class1", "class2"]  # 根据实际情况修改类别名称def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]return x * dw, y * dh, w * dw, h * dhdef convert_annotation(image_id):in_file = open('VOCData/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('VOCData/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))b1, b2, b3, b4 = bif b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')in_file.close()out_file.close()wd = getcwd()
for image_set in sets:if not os.path.exists('VOCData/labels/'):os.makedirs('VOCData/labels/')image_ids = open('VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('VOCData/dataSet_path/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(wd + '/VOCData/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

三、配置文件

1、创建数据集配置文件

在 YOLOv5 目录下的 data 文件夹下新建一个 myvoc.yaml 文件,内容如下:

train: D:/Yolov5/yolov5/VOCData/dataSet_path/train.txt
val: D:/Yolov5/yolov5/VOCData/dataSet_path/val.txt# number of classes
nc: 2# class names
names: ["class1", "class2"]

确保路径和类别名称与实际情况一致。

2、选择模型配置文件

YOLOv5 有多种配置文件,如 yolov5s.yamlyolov5m.yamlyolov5l.yamlyolov5x.yaml。选择一个合适的配置文件,例如 yolov5x.yaml,并将其复制到 models 文件夹中,重命名为 ddjc_model.yaml,然后修改 nc 为实际的类别数。

四、训练模型

1、修改训练参数

train.py 文件中,找到 def parse_opt(known=False) 函数,修改训练参数。例如:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5x', help='initial weights path')
parser.add_argument('--cfg', type=str, default=ROOT / 'models/ddjc_model.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/myvoc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--device', default='cuda', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

2、开始训练

在终端中运行以下命令开始训练:

python train.py --img 640 --batch 16 --epochs 50 --data data/myvoc.yaml --cfg models/ddjc_model.yaml --weights yolov5x.pt --name ddjc_model

五、使用示例

1、测试模型

训练完成后,可以使用 detect.py 文件进行测试。例如:

python detect.py --weights runs/train/ddjc_model/weights/best.pt --img 640 --conf 0.25 --source data/images

2、评估模型

使用 val.py 文件评估模型性能:

python val.py --weights runs/train/ddjc_model/weights/best.pt --data data/myvoc.yaml --img 640

六、总结

本文详细介绍了如何在 YOLOv5 中训练长方形图像,包括数据集准备、标注、配置文件设置和模型训练。通过这些步骤,可以确保模型能够准确地检测和识别长方形图像中的目标。希望本文对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • Yolov5训练自己的数据集(详细完整版)_yolov5缔宇-CSDN博客
  • 如何制作数据集并基于yolov5训练成模型并部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/3407.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于微信小程序的电子点菜系统设计与实现(KLW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

Titans 架构中的记忆整合:Memory as a Context;Gated Memory;Memory as a Layer

Titans 架构中的记忆整合 Titans 架构中的记忆整合 Memory as a Context(MAC)变体:在处理长序列数据时,将序列分段,对于当前段 S ( t ) S^{(t)}

洛谷P3916 图的遍历

题目描述 给出 N 个点,M 条边的有向图,对于每个点 v,求 A(v) 表示从点 v 出发,能到达的编号最大的点。 输入格式 第 1 行 2 个整数 N,M,表示点数和边数。 接下来 M 行,每行 2 个整数 Ui,Vi​,表示边 (U…

【python】实现图像中的阴影去除 | 方案和代码

去除图像中的阴影是一项复杂的图像处理任务,尤其是当阴影区域与图像的其他部分混合时。阴影的存在会影响图像的颜色平衡和亮度,导致图像分析和理解的困难。 目录 一 安装依赖 二 函数 ① rgb2hsv ② hsv2rgb 三 实现图像中的阴影去除的方法 四 实…

记录一次 centos 启动失败

文章目录 现场1分析1现场2分析2搜索实际解决过程 现场1 一次断电,导致 之前能正常启动的centos 7.7 起不来了有部分log , 关键信息如下 [1.332724] XFS(sda3): Internal error xfs ... at line xxx of fs/xfs/xfs_trans.c [1.332724] XFS(sda3): Corruption of in-memory data…

文件操作:系统IO

文件操作 目录 基本概念Linux文件特点操作方式1-系统IO操作方式2-标准IO两种操作模式的对比 基本概念 什么是文件 简单的说,文件就是存储在硬件磁盘上的数据集合 文件通过什么来标识? 系统中在处理的文件(读、写操作)的时候…

ComfyUI-PromptOptimizer:文生图提示优化节点

ComfyUI-PromptOptimizer 是 ComfyUI 的一个自定义节点,旨在优化文本转图像模型的提示。它将用户输入的提示转换为更详细、更多样化、更生动的描述,使其更适合生成高质量的图像。无需本地模型。 1、功能 提示优化:优化用户输入的提示以生成…

windows 搭建flutter环境,开发windows程序

环境安装配置: 下载flutter sdk https://docs.flutter.dev/get-started/install/windows 下载到本地后,随便找个地方解压,然后配置下系统环境变量 编译windows程序本地需要安装vs2019或更新的开发环境 主要就这2步安装后就可以了&#xff0…

从玩具到工业控制--51单片机的跨界传奇【3】

在科技的浩瀚宇宙中,51 单片机就像一颗独特的星辰,散发着神秘而迷人的光芒。对于无数电子爱好者而言,点亮 51 单片机上的第一颗 LED 灯,不仅仅是一次简单的操作,更像是开启了一扇通往新世界的大门。这小小的 LED 灯&am…

构建一个简单的深度学习模型

构建一个简单的深度学习模型通常包括以下几个步骤:定义模型架构、编译模型、训练模型和评估模型。下面是一个使用Keras(TensorFlow的高级API)构建和训练一个简单的全连接神经网络(也称为多层感知器,MLP)的示…

linux下的NFS和FTP部署

目录 NFS应用场景架构通信原理部署权限认证Kerberos5其他认证方式 命令serverclient查看测试系统重启后自动挂载 NFS 共享 高可用实现 FTP对比一些ftp服务器1. **vsftpd (Very Secure FTP Daemon)**2. **ProFTPD (Professional FTP Daemon)**3. **Pure-FTPd**4. **WU-FTPD (Was…

Python操作Excel——openpyxl使用笔记(3)

3 单元格基本操作 3.1 访问单元格和读写其内容 在前面的例子中,已经简单演示过了向单元格中写入和读取数据。这里进一步提供访问单元格的一些方法。和前面一样,使用工作表的索引方式,可以快速定位一个单元格: import openpyxl w…

【漏洞预警】FortiOS 和 FortiProxy 身份认证绕过漏洞(CVE-2024-55591)

文章目录 一、产品简介二、漏洞描述三、影响版本四、漏洞检测方法五、解决方案 一、产品简介 FortiOS是Fortinet公司核心的网络安全操作系统,广泛应用于FortiGate下一代防火墙,为用户提供防火墙、VPN、入侵防御、应用控制等多种安全功能。 FortiProxy则…

一、1-2 5G-A通感融合基站产品及开通

1、通感融合定义和场景(阅读) 1.1通感融合定义 1.2通感融合应用场景 2、通感融合架构和原理(较难,理解即可) 2.1 感知方式 2.2 通感融合架构 SF(Sensing Function):核心网感知控制…

头盔识别技术

本项目参考b站视频https://www.bilibili.com/video/BV1EhkiY2Epg/?spm_id_from333.999.0.0&vd_source6c722ac1eba24d4cbadc587e4d1892a7 1.下载miniconda 使用 Miniconda 来管理 Python 环境(如 yolov8),就可以通过 conda create -n y…

某讯一面,感觉问Redis的难度不是很大

前不久,有位朋友去某讯面试,他说被问到了很多关于 Redis 的问题,比如为什么用 Redis 作为 MySQL 的缓存?Redis 中大量 key 集中过期怎么办?如何保证缓存和数据库数据的一致性?我将它们整理出来,…

PCL 新增自定义点类型【2025最新版】

目录 一、自定义点类型1、前言2、定义方法3、代码示例二、合并现有类型三、点云按时间渲染1、CloudCompare渲染2、PCL渲染博客长期更新,本文最近更新时间为:2025年1月18日。 一、自定义点类型 1、前言 PCL库自身定义了很多点云类型,但是在使用的时候时如果要使用自己定义的…

R语言绘图

多组火山图 数据准备&#xff1a; 将CSV文件同一在一个路径下&#xff0c;用代码合并 确保文件列名正确 library(fs) library(dplyr) library(tidyr) library(stringr) library(ggplot2) library(ggfun) library(ggrepel)# 获取文件列表 file_paths <- dir_ls(path &quo…

ICC和GCC编译器编译Openmp程序的运行区别

1、背景介绍 硬件和隔核设置&#xff1a; Intel E5 V4 14核。 配置 isolcpus2,3,4,5,6,7,8,9,10,11,12,13&#xff0c;隔离了 12 个核心&#xff0c;仅保留核心 0 和核心 1 作为普通调度核心。 操作系统 湖南麒麟3.3-3B OpenMP并行配置&#xff1a; 使用核心 4 到核心 …

改进果蝇优化算法之一:自适应缩小步长的果蝇优化算法(ASFOA)

自适应缩小步长的果蝇优化算法(ASFOA)是对传统果蝇优化算法的一种重要改进,旨在克服其后期种群多样性不足、容易过早收敛和陷入局部最优等问题。有关果蝇优化算法的详情可以看我的文章:路径规划之启发式算法之二十七:果蝇优化算法(Fruit Fly Optimization Algorithm,FOA…