MobileNetV4实战:使用MobileNetV4实现图像分类任务(一)

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 计算mean和std
  • 生成数据集

摘要

论文链接:https://arxiv.org/pdf/2404.10518
MobileNetV4,作为新一代移动设备神经网络架构,凭借其创新的通用倒置瓶颈UIB块和Mobile MQA注意力块,实现了计算效率和运行速度的显著提升。该架构通过精炼的神经架构搜索NAS方法,创建了多个卓越性能的移动设备模型。新型知识蒸馏技术进一步提高了模型准确性,而Mobile MQA块相较于传统多头注意力,在移动加速器上实现了显著的推理加速。

在这里插入图片描述

MobileNetV4在设计上强调简洁与效率,通过广泛分析和实证,选择了高效组件和参数。它采用标准组件、灵活的UIB块和直观的注意力机制,结合增强的TuNAS方法,通过两阶段搜索策略解决了参数共享问题,实现了UIB块的实例化。此外,鲁棒训练增强了TuNAS,确保了架构质量的准确评估。

在实验中,MobileNetV4展现了卓越的性能。它在ImageNet-1K分类和COCO目标检测任务上取得了显著成果,并在多种硬件上实现了帕累托最优。特别是在CPU上,其运行速度远超前代模型,证明了其在移动设备上的高效性和实用性。

MobileNetV4还通过离线蒸馏数据集降低了超参数敏感性,并在JFT蒸馏数据集上实现了显著改进。这一系列的创新为移动视觉任务提供了新的解决方案,推动了移动计算领域的进一步发展。

MobileNetV4以其高效的神经网络架构和出色的性能表现,为移动设备提供了实时、高效的神经网络解决方案,为移动计算领域的发展注入了新的活力。

本文使用MobileNetV4模型实现图像分类任务,模型选择mobilenetv4_conv_large,在植物幼苗分类任务ACC达到了85%+。

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现MobileNetV4模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn_logger = logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay=0.9999, device='', resume=''):# make a copy of the model for accumulating moving average of weightsself.ema = deepcopy(model)self.ema.eval()self.decay = decayself.device = device  # perform ema on different device from model if setif device:self.ema.to(device=device)self.ema_has_module = hasattr(self.ema, 'module')if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint = torch.load(checkpoint_path, map_location='cpu')assert isinstance(checkpoint, dict)if 'state_dict_ema' in checkpoint:new_state_dict = OrderedDict()for k, v in checkpoint['state_dict_ema'].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name = 'module.' + k if not k.startswith('module') else kelse:name = knew_state_dict[name] = vself.ema.load_state_dict(new_state_dict)_logger.info("Loaded state_dict_ema")else:_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")def update(self, model):# correct a mismatch in state dict keysneeds_module = hasattr(model, 'module') and not self.ema_has_modulewith torch.no_grad():msd = model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k = 'module.' + kmodel_v = msd[k].detach()if self.device:model_v = model_v.to(device=self.device)ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device='cpu',resume=resume)# 训练过程中,更新完参数后,同步update shadow weights
def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

MobileNetV4_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  └─mobilenetv4.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练MobileNetV4模型
models:来源官方代码。

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/340792.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu20.04 Mysql基本操作知识

#Mysql基本知识 运行环境Ubuntu20.04 1.开启mysql服务 sytemctl start mysql不然,命令行进入myql交互行提交命令后,就会出现4200错误。 2.显示所有数据库 SHOW DATABASES;注意复数s,毕竟很多数据库 3.新建数据库test CREATE DATABASE …

【C语言】详解函数(庖丁解牛版)

文章目录 1. 前言2. 函数的概念3.库函数3.1 标准库和头文件3.2 库函数的使用3.2.1 头文件的包含3.2.2 实践 4. 自定义函数4.1 自定义函数的语法形式4.2 函数的举例 5. 形参和实参5.1 实参5.2 形参5.3 实参和形参的关系 6. return 语句6. 总结 1. 前言 一讲到函数这块&#xff…

重磅消息! Stable Diffusion 3将于6月12日开源 2B 版本的模型,文中附候补注册链接。

在OpenAI发布Sora后,Stability AI也发布了其最新的模型Stabled Diffusion3, 之前的文章中已经和大家介绍过,感兴趣的小伙伴可以点击以下链接阅读。Sora是音视频方向,Stabled Diffusion3是图像生成方向,那么两者没有必然的联系&…

秋招突击——算法打卡——5/30——复习{最大上升子序列的和、面试算法缺陷补充}——新做:{回文数+补充 自定义Stoi实现、正则表达式匹配}

文章目录 复习导弹拦截——最大上升子序列和推理过程实现代码补充昨日面试 新作回文数实现代码 字符串转整数正则表达式匹配个人实现思路分析实现代码如下 参考做法思路分析实现代码 总结 复习 导弹拦截——最大上升子序列和 同样类型题目链接:导弹拦截重做这道题…

vue+vscode 快速搭建运行调试环境与发布

1.安装node.js Node.js — Run JavaScript Everywhere 默认不断next 2.更换镜像地址 运行-cmd 执行以下代码安装 npm config set registry https://registry.npmmirror.com 检查node.js和镜像是否是否成功 node -v npm -v npm config get registry 3.安装打包工具 …

echarts学习:基本使用和组件封装

前言 我在工作中使用echarts较少,这就导致每次使用时都要从头再来,这让我很头疼。因此我决心编写一系列文章将我参与工作后几次使用echarts所用到的知识记录下来,以便将来可以快速查阅。 一、基本使用 像我一样的新手,想要入门e…

.NET IoC 容器(三)Autofac

目录 .NET IoC 容器(三)AutofacAutofacNuget 安装实现DI定义接口定义实现类依赖注入 注入方式构造函数注入 | 属性注入 | 方法注入注入实现 接口注册重复注册指定参数注册 生命周期默认生命周期单例生命周期每个周期范围一个生命周期 依赖配置Nuget配置文…

新手教程之使用LLaMa-Factory微调LLaMa3

文章目录 为什么要用LLaMa-Factory什么是LLaMa-FactoryLLaMa-Factory环境搭建微调LLaMA3参考博文 为什么要用LLaMa-Factory 如果你尝试过微调大模型,你就会知道,大模型的环境配置是非常繁琐的,需要安装大量的第三方库和依赖,甚至…

英伟达GPU架构加速狂飙

NVIDIA首席执行官黄仁勋在台湾大学体育馆发表主题演讲,展示了新一代Rubin架构,这是NVIDIA加速推出新架构的最新成果。 在讨论NVIDIA下一代架构时,黄仁勋提到了Blackwell Ultra GPU,并表示它可能会继续升级。然后他透露&#xff0c…

Unity 之 Android 【获取设备的序列号 (Serial Number)/Android_ID】功能的简单封装

Unity 之 Android 【获取设备的序列号 (Serial Number)/Android_ID】功能的简单封装 目录 Unity 之 Android 【获取设备的序列号 (Serial Number)/Android_ID】功能的简单封装 一、简单介绍 二、获取设备的序列号 (Serial Number) 实现原理 1、Android 2、 Unity 三、注意…

蓝牙网关和蓝牙mesh网关的对比

蓝牙网关和蓝牙Mesh网关是物联网(IoT)领域中两种重要的设备,它们各自有不同的特点和应用场景。以下是它们的一些主要对比和区别 1. 网络结构: - 蓝牙网关:通常采用点对点或星型拓扑结构,一个网关连接多个…

Scikit-Learn 基础教程

目录 🐋Scikit-Learn 基础教程 🐋Scikit-Learn 简介 🐋 数据预处理 🦈数据集导入 🦈数据清洗 🦈特征选择 🦈特征标准化 🐋 模型选择 🦈分类模型 🦈回…

npm install 出错,‘proxy‘ config is set properly. See: ‘npm help config‘

背景 从远程clone下项目之后,使用命令 npm install 安装依赖,报错如下 意为: 报错: npm犯错!network与网络连通性有关的问题。 npm犯错!网络在大多数情况下,你背后的代理或有坏的网络设置。 npm犯错!网络 npm犯错…

React - 实现走马灯组件

一、实现效果 二、源码分析 import {useRef, useState} from "react";export const Carousel () > {const images [{id: 3, url: https://sslstage3.sephorastatic.cn/products/2/4/6/8/1/6/1_n_new03504_100x100.jpg}, {id: 1, url: https://sslstage2.sephor…

10-Django项目--Ajax请求

目录 Ajax请求 简单示范 html 数据添加 py文件 html文件 demo_list.html Ajax_data.py 图例 Ajax请求 简单示范 html <input type"button" id"button-one" class"btn btn-success" value"点我"> ​ ​ <script>/…

模板进阶

非类型模板参数&#xff08;常量参数&#xff09; 相当于向类传递常量&#xff08;编译前确定&#xff09;参数 只能传整型/size_t&#xff0c;不可double等 C20 后可以支持其他内置类型&#xff08;可指针&#xff09; 自定义类型的实参永远不行 array 可理解为固定size的…

10倍速提升音乐制作,FL Studio21.2.9中文版揭秘!

FL Studio21中文版是数字音频工作站软件领域的一颗璀璨明星&#xff0c;它以强大的功能和直观的操作界面&#xff0c;赢得了音乐制作人和爱好者的广泛青睐。无论是专业音乐人还是初学者&#xff0c;都能通过这款软件探索和实现他们对音乐的创作和想象。本文将详细介绍FL Studio…

Ubuntu24.04 LTS安装中文输入法

前言 最近&#xff0c;windows玩没了&#xff0c;一怒之下决定换一个操作系统&#xff0c;当然就是最新的Ubuntu24.04 LTS.&#xff0c;其中魔法和咒语&#xff08;汉语&#xff09;是inux遇到的第一大难关&#xff0c;我权限不够教不了魔法&#xff0c;但我可以教你咒语(๑•…

Pycharm 添加内容根

解决问题&#xff1a;包未能被正常引入时

LeetCode746使用最小花费爬楼梯

题目描述 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。 解析 动态…