前言
本文主要是介绍了使用 openai 提供的 api 来完成对开放出来的模型进行微调操作。开放的模型有 curie 、babbage、ada 等,我这里以微调 ada 举例,其他类似。
需要提前安装好 openai 所需要的各种库,我这里的库版本是 openai-0.25.0 。以及最关键过的 openai key ,这需要科学上网,请自行解决。需要注意的是微调是要花钱的,不过最开始的注册账户里默认都有 5$ ,在开始之前到
https://platform.openai.com/account/usage
这里可以查看是否有余额。另外可以去
https://openai.com/pricing
查看微调不同模型的费用,对于本文的介绍的内容使用免费的 5$ 是足够的。
数据准备
我们这里使用现成的数据,从网上可以直接读取使用,该数据主要有两类包含棒球和曲棍球。并且会随机打乱数据,方便后续的训练。可以看到数据的总量不大,只有 1197 条数据。
from sklearn.datasets import fetch_20newsgroups
import pandas as pd
import openaicategories = ['rec.sport.baseball', 'rec.sport.hockey']
sports_dataset = fetch_20newsgroups(subset='train', shuffle=True, random_state=42, categories=categories)
len_all, len_baseball, len_hockey = len(sports_dataset.data), len([e for e in sports_dataset.target if e == 0]), len([e for e in sports_dataset.target if e == 1])
print(f"Total examples: {len_all}, Baseball examples: {len_baseball}, Hockey examples: {len_hockey}")
打印:
Total examples: 1197, Baseball examples: 597, Hockey examples: 600
数据处理
为了加速我们的训练,我们这里选用打乱的训练集中的前 100 条数据来进行演示效果,因为数据多的话,时间消耗会长,而且微调的费用会和训练数据成正比增加。
这里的数据一共有两列,一列是 prompt 表示待分类的文本,一列是 completion 表示对应文本描述的标签,标签只有两类 baseball 和 hockey 。
labels = [sports_dataset.target_names[x].split('.')[-1] for x in sports_dataset['target']]
texts = [text.strip() for text in sports_dataset['data']]
df = pd.DataFrame(zip(texts, labels), columns = ['prompt','completion'])
df = df[:100]
微调模型的输入数据需要按照规定的格式进行整理,这里使用常见的 jsonl 格式,使用 openai 库自带的工具进行处理即可得到训练集 sport2_prepared_train.jsonl 和验证集 sport2_prepared_valid.jsonl 在当前目录。
df.to_json("sport2.jsonl", orient='records', lines=True)
!openai tools fine_tunes.prepare_data -f sport2.jsonl -q
模型训练
首先将你的 openai key 设置成环境变量 OPENAI_API_KEY 才能执行下面的命令,该命令会使用指定的训练集和验证集进行微调的分类任务,并且会计算保留分类常见的指标,我们这里指定的模型为 ada 。
!openai api fine_tunes.create -t "sport2_prepared_train.jsonl" -v "sport2_prepared_valid.jsonl" --compute_classification_metrics --classification_positive_class " baseball" -m ada
打印:
Uploaded file from sport2_prepared_train.jsonl: file-wx9c3lYQB6Z4pWrrCqBabWUh
Uploaded file from sport2_prepared_valid.jsonl: file-aujZlpbhXZnevKzJNjF06q85
Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
Streaming events until fine-tuning is complete...
[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
[2023-03-28 09:59:16] Fine-tune costs $0.06
[2023-03-28 09:59:16] Fine-tune enqueued. Queue number: 2
[2023-03-28 09:59:32] Fine-tune is in the queue. Queue number: 1
(Ctrl-C will interrupt the stream, but not cancel the fine-tune)
[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wkStream interrupted (client disconnected).
To resume the stream, run:openai api fine_tunes.follow -i ft-aEHXhd8q9dfG8MOKt43ph7wk
从打印信息中我们能看到此次训练的花费,以及当前的排队情况,这个训练过程是在 openai 的服务器上进行的,有时候长时间因为排队没有响应会自己断开数据流的传输,我们如果想要继续查看任务情况,只需要找到打印出来的唯一任务编码,执行下面的命令,我的远程服务器上的训练任务编码是 ft-aEHXhd8q9dfG8MOKt43ph7wk ,其实上面的打印信息中都有相应的提示。
openai api fine_tunes.follow -i ft-aEHXhd8q9dfG8MOKt43ph7wk[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
[2023-03-28 09:59:16] Fine-tune costs $0.06
[2023-03-28 09:59:16] Fine-tune enqueued. Queue number: 2
[2023-03-28 09:59:32] Fine-tune is in the queue. Queue number: 1
[2023-03-28 10:12:20] Fine-tune is in the queue. Queue number: 0
[2023-03-28 10:13:54] Fine-tune started
[2023-03-28 10:14:22] Completed epoch 1/4
[2023-03-28 10:14:37] Completed epoch 2/4
[2023-03-28 10:14:50] Completed epoch 3/4
[2023-03-28 10:15:03] Completed epoch 4/4
[2023-03-28 10:15:26] Uploaded model: ada:ft-personal-2023-03-28-02-15-26
[2023-03-28 10:15:27] Uploaded result file: file-YZ2VNHkFnAJAhBeTKJ2AxfLK
[2023-03-28 10:15:27] Fine-tune succeeded
训练信息打印
我们通过任务编码可以获取该任务训练的各种信息,比如随着 epoch 变化的 loss 、acc 等信息。可以看出在我们的训练集上训练的分类准确率为 100% 。
!openai api fine_tunes.results -i ft-aEHXhd8q9dfG8MOKt43ph7wk > result.csv
results = pd.read_csv('result.csv')
results[results['classification/accuracy'].notnull()].tail(1)
打印信息:
step elapsed_tokens elapsed_examples training_loss training_sequence_accuracy training_token_accuracy validation_loss validation_sequence_accuracy validation_token_accuracy classification/accuracy classification/precision classification/recall classification/auroc classification/auprc classification/f1.0
316 317 143557 317 0.02417 1.0 1.0 NaN NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0
模型测试
我们随机挑选验证集中的一条文本,使用微调后的模型进行测试,打印出来的分类标签是正确的。
test = pd.read_json('sport2_prepared_valid.jsonl', lines=True)
res = openai.Completion.create(model= 'ada:ft-personal-2023-03-28-02-15-26', prompt=test['prompt'][0] + '\n\n###\n\n', max_tokens=1, temperature=0)
res['choices'][0]['text']
打印:
' hockey'
另外我们的微调分类器是非常通用的,不仅在我们使用的训练集和验证集上游泳,它也能用来预测推文。
sample_hockey_tweet = """Thank you to the
@Canesand all you amazing Caniacs that have been so supportive! You guys are some of the best fans in the NHL without a doubt! Really excited to start this new chapter in my career with the
@DetroitRedWings!!"""
res = openai.Completion.create(model='ada:ft-personal-2023-03-28-02-15-26', prompt=sample_hockey_tweet + '\n\n###\n\n', max_tokens=1, temperature=0, logprobs=2)
res['choices'][0]['text']
打印:
' baseball'
总结
其实使用 openai 的微调 api 只需要四步:
- 准备环境和 key
- 准备规定格式的数据
- 训练模型
- 模型推理
是不是很简单!
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓