使用 OPENAI API 微调 GPT-3 的 Ada 模型

前言

本文主要是介绍了使用 openai 提供的 api 来完成对开放出来的模型进行微调操作。开放的模型有 curie 、babbage、ada 等,我这里以微调 ada 举例,其他类似。

需要提前安装好 openai 所需要的各种库,我这里的库版本是 openai-0.25.0 。以及最关键过的 openai key ,这需要科学上网,请自行解决。需要注意的是微调是要花钱的,不过最开始的注册账户里默认都有 5$ ,在开始之前到

https://platform.openai.com/account/usage 

这里可以查看是否有余额。另外可以去

https://openai.com/pricing 

查看微调不同模型的费用,对于本文的介绍的内容使用免费的 5$ 是足够的。

数据准备

我们这里使用现成的数据,从网上可以直接读取使用,该数据主要有两类包含棒球和曲棍球。并且会随机打乱数据,方便后续的训练。可以看到数据的总量不大,只有 1197 条数据。

from sklearn.datasets import fetch_20newsgroups
import pandas as pd
import openaicategories = ['rec.sport.baseball', 'rec.sport.hockey']
sports_dataset = fetch_20newsgroups(subset='train', shuffle=True, random_state=42, categories=categories)
len_all, len_baseball, len_hockey = len(sports_dataset.data), len([e for e in sports_dataset.target if e == 0]), len([e for e in sports_dataset.target if e == 1])
print(f"Total examples: {len_all}, Baseball examples: {len_baseball}, Hockey examples: {len_hockey}")

打印:

Total examples: 1197, Baseball examples: 597, Hockey examples: 600

数据处理

为了加速我们的训练,我们这里选用打乱的训练集中的前 100 条数据来进行演示效果,因为数据多的话,时间消耗会长,而且微调的费用会和训练数据成正比增加。

这里的数据一共有两列,一列是 prompt 表示待分类的文本,一列是 completion 表示对应文本描述的标签,标签只有两类 baseball 和 hockey 。

labels = [sports_dataset.target_names[x].split('.')[-1] for x in sports_dataset['target']]
texts = [text.strip() for text in sports_dataset['data']]
df = pd.DataFrame(zip(texts, labels), columns = ['prompt','completion']) 
df = df[:100]

微调模型的输入数据需要按照规定的格式进行整理,这里使用常见的 jsonl 格式,使用 openai 库自带的工具进行处理即可得到训练集 sport2_prepared_train.jsonl 和验证集 sport2_prepared_valid.jsonl 在当前目录。

df.to_json("sport2.jsonl", orient='records', lines=True)
!openai tools fine_tunes.prepare_data -f sport2.jsonl -q

模型训练

首先将你的 openai key 设置成环境变量 OPENAI_API_KEY 才能执行下面的命令,该命令会使用指定的训练集和验证集进行微调的分类任务,并且会计算保留分类常见的指标,我们这里指定的模型为 ada 。

!openai api fine_tunes.create -t "sport2_prepared_train.jsonl" -v "sport2_prepared_valid.jsonl" --compute_classification_metrics --classification_positive_class " baseball" -m ada

打印:

Uploaded file from sport2_prepared_train.jsonl: file-wx9c3lYQB6Z4pWrrCqBabWUh
Uploaded file from sport2_prepared_valid.jsonl: file-aujZlpbhXZnevKzJNjF06q85
Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
Streaming events until fine-tuning is complete...
[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
[2023-03-28 09:59:16] Fine-tune costs $0.06
[2023-03-28 09:59:16] Fine-tune enqueued. Queue number: 2
[2023-03-28 09:59:32] Fine-tune is in the queue. Queue number: 1
(Ctrl-C will interrupt the stream, but not cancel the fine-tune)
[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wkStream interrupted (client disconnected).
To resume the stream, run:openai api fine_tunes.follow -i ft-aEHXhd8q9dfG8MOKt43ph7wk

从打印信息中我们能看到此次训练的花费,以及当前的排队情况,这个训练过程是在 openai 的服务器上进行的,有时候长时间因为排队没有响应会自己断开数据流的传输,我们如果想要继续查看任务情况,只需要找到打印出来的唯一任务编码,执行下面的命令,我的远程服务器上的训练任务编码是 ft-aEHXhd8q9dfG8MOKt43ph7wk ,其实上面的打印信息中都有相应的提示。

openai api fine_tunes.follow -i ft-aEHXhd8q9dfG8MOKt43ph7wk[2023-03-28 09:57:12] Created fine-tune: ft-aEHXhd8q9dfG8MOKt43ph7wk
[2023-03-28 09:59:16] Fine-tune costs $0.06
[2023-03-28 09:59:16] Fine-tune enqueued. Queue number: 2
[2023-03-28 09:59:32] Fine-tune is in the queue. Queue number: 1
[2023-03-28 10:12:20] Fine-tune is in the queue. Queue number: 0
[2023-03-28 10:13:54] Fine-tune started
[2023-03-28 10:14:22] Completed epoch 1/4
[2023-03-28 10:14:37] Completed epoch 2/4
[2023-03-28 10:14:50] Completed epoch 3/4
[2023-03-28 10:15:03] Completed epoch 4/4
[2023-03-28 10:15:26] Uploaded model: ada:ft-personal-2023-03-28-02-15-26
[2023-03-28 10:15:27] Uploaded result file: file-YZ2VNHkFnAJAhBeTKJ2AxfLK
[2023-03-28 10:15:27] Fine-tune succeeded

训练信息打印

我们通过任务编码可以获取该任务训练的各种信息,比如随着 epoch 变化的 loss 、acc 等信息。可以看出在我们的训练集上训练的分类准确率为 100% 。

!openai api fine_tunes.results -i ft-aEHXhd8q9dfG8MOKt43ph7wk > result.csv
results = pd.read_csv('result.csv')
results[results['classification/accuracy'].notnull()].tail(1)

打印信息:

	step	elapsed_tokens	elapsed_examples	training_loss	training_sequence_accuracy	training_token_accuracy	validation_loss	validation_sequence_accuracy	validation_token_accuracy	classification/accuracy	classification/precision	classification/recall	classification/auroc	classification/auprc	classification/f1.0
316	317	143557	317	0.02417	1.0	1.0	NaN	NaN	NaN	1.0	1.0	1.0	1.0	1.0	1.0

模型测试

我们随机挑选验证集中的一条文本,使用微调后的模型进行测试,打印出来的分类标签是正确的。

test = pd.read_json('sport2_prepared_valid.jsonl', lines=True)
res = openai.Completion.create(model= 'ada:ft-personal-2023-03-28-02-15-26', prompt=test['prompt'][0] + '\n\n###\n\n', max_tokens=1, temperature=0)
res['choices'][0]['text']

打印:

' hockey'

另外我们的微调分类器是非常通用的,不仅在我们使用的训练集和验证集上游泳,它也能用来预测推文。

sample_hockey_tweet = """Thank you to the 
@Canesand all you amazing Caniacs that have been so supportive! You guys are some of the best fans in the NHL without a doubt! Really excited to start this new chapter in my career with the 
@DetroitRedWings!!"""
res = openai.Completion.create(model='ada:ft-personal-2023-03-28-02-15-26', prompt=sample_hockey_tweet + '\n\n###\n\n', max_tokens=1, temperature=0, logprobs=2)
res['choices'][0]['text']

打印:

' baseball'

总结

其实使用 openai 的微调 api 只需要四步:

  • 准备环境和 key
  • 准备规定格式的数据
  • 训练模型
  • 模型推理

是不是很简单!

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/346514.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【已解决】chrome视频无法自动播放的问题

问题: 在用datav开发大屏的时候,放了一个视频组件,但是发现视频组件即使设置了自动播放,仍然无法自动播放 原因: 76 以上版本的谷歌浏览器只能在系统静音下自动播放 解决: 音频自动播放浏览器白名单设置&…

计算机网络期末考试知识点(关键词:江中)

目录 大家端午节快乐呀!又到了一年两度的期末考试月了,这里给大家整理了一些复习知识点,大家可以边吃粽子边复习,事半功倍哈哈哈。祝各位期末过!过!过!。 1 第一章 计算机网络体系结构 计算机…

WT32-ETH01作为TCP Server进行通讯

目录 模块简介WT32-ETH01作为TCP Server设置W5500作为TCP Client设置连接并进行通讯总结 模块简介 WT32-ETH01网关主要功能特点: 采用双核Xtensa⑧32-bit LX6 MCU.集成SPI flash 32Mbit\ SRAM 520KB 支持TCP Server. TCP Client, UDP Server. UDP Client工作模式 支持串口、wi…

安全生产新篇章:可燃气体报警器检验周期的国家标准解读

随着工业化进程的加快,安全生产成为了重中之重。 可燃气体报警器作为预防火灾和爆炸事故的重要设备,其准确性和可靠性直接关系到企业的生产安全和员工的生命财产安全。 因此,国家对可燃气体报警器的检验周期有着明确的规定,以确…

【Java面试】十二、Kafka相关

文章目录 1、Kafka如何保证消息不丢失1.1 生产者发消息到Brocker丢失:设置异步发送1.2 消息在Broker存储时丢失:发送确认机制1.3 消费者从Brocker接收消息丢失1.4 同步 异步组合提交偏移量 2、Kafka如何保证消费的顺序性3、Kafka高可用机制3.1 集群模式…

小程序自定义marker弹出框教程

需求背景 微信小程序开发,需要使用腾讯地图显示自定义marker,并且点击marker后弹出自定义的customCallout,并且customCallout的内容为用户点击marker的时候再从后台接口获取数据。 百度了一圈后发现居然没有一篇文章可以一次性完成&#xf…

Polar Web【简单】upload

Polar Web【简单】upload Contents Polar Web【简单】upload思路EXPPythonGo 运行&总结 思路 如题目所说,本题考查的是文件上传漏洞的渗透技巧。 打开环境,发现需要上传的是图片文件,故考虑使用截取数据包进行数据修改进行重放。在重发器…

王学岗鸿蒙开发(北向)——————(十三)音乐播放器

AudioRenderer适合录音 AVPlayer:简单的本地单曲播放 MP3文件放置的地方 import media from ohos.multimedia.media import common from ohos.app.ability.common; Entry Component struct Index {//第1步:avPlayer:media.AVPlayer nullasync onPageShow(){//第…

AI-知识库搭建(一)腾讯云向量数据库使用

一、AI知识库 将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。 二、腾讯云向量数…

Nvidia/算能 +FPGA+AI大算力边缘计算盒子:医疗健康智能服务

作为国产运动医学的领导者,致力于提供运动医学的整体临床解决方案,公司坐落于北京经济技术开发区。应用于肩关节、膝关节、足/踝关节、髋关节、肘关节、手/腕关节的运动医学设备、植入物和手术器械共计300多个品规通过NMPA的批准,临床应用于国…

AJAX 跨域

这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源: 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的,不…

AI漫画赛道,10分钟快速赚钱秘诀!

AI百宝箱-Chatgpt4.0、Midjourney绘画、人工智能绘画、AI换脸、AI图片放大、AI图片分析、AI图片融合https://h5.cxyhub.com/?invitationhmeEo7 先使用ChatGPT写小说 ComicAI 漫画小说生成网站 1. 创建小说漫画 2. 故事模板 3. 生成角色形…

【Linux】ls命令

这个命令主要是用于显示指定工作目录下之内容(列出目前工作目录所含的文件及子目录)。 掌握几个重点的常使用的就可以: ls -l # 以长格式显示当前目录中的文件和目录 ls -a # 显示当前目录中的所有文件和目录&am…

【C++题解】1457 - 子数整除

问题:1457 - 子数整除 类型:循环应用 题目描述: 于一个五位数 abcde ,可将其拆分为三个子数: sub1abc sub2bcd sub3cde 例如,五位数20207 可以拆分成sub1202 sub2020 (也就是 20) sub3207 现在给定一个正…

Soap - ScriptableObject 架构模式

厌倦了意大利面代码吗?🍝 Soap提供了无代码解决方案来解决常见的意大利面代码问题,让您可以: 在场景和组件之间共享变量 以简单而强大的方式发送和接收事件 自动将UI和组件绑定到数据 一键保存关键变量 让游戏开发更容易 🎲 Soap使得解耦您的代码变得简单而无缝,使您能…

助力高考,一组彩色的文字

1、获取文本内容 首先&#xff0c;获取每个<div>元素的文本内容&#xff0c;并清空其内部HTML&#xff08;innerHTML ""&#xff09;。 2、创建<span>元素 然后&#xff0c;它遍历文本的每个字符&#xff0c;为每个字符创建一个新的<span>元素…

linux网络服务“PXE网络批量装机和Kickstart全自动化安装”

PXE网络批量装机 pxe自动装机&#xff1a; 服务端和客户端 pxe c/s 模式&#xff1a;允许客户端通过网络从远程服务器&#xff08;服务端&#xff09;下载引导镜像&#xff0c;加载安装文件&#xff0c;实现自动化安装操作系统。 无人值守 :安装选项不需要人为干预&#xf…

STM32智能家居项目esp8266上云OneNet【附源码+详细教程】

目录 一、硬件选材 二、OneNet使用教程 三、代码修改教程 四、添加数据流方法 五、项目工程&#xff08;源码元件清单教程&#xff09; 小白也能做&#xff0c;项目工程在后文可下载。 一、硬件选材 二、OneNet使用教程 拿到代码后肯定是连不上网的&#xff0c;因为源码…

【漏洞复现】宏景eHR openFile.jsp 任意文件读取漏洞

0x01 产品简介 宏景eHR人力资源管理软件是一款人力资源管理与数字化应用相融合&#xff0c;满足动态化、协同化、流程化、战略化需求的软件。 0x02 漏洞概述 宏景eHR openFile.jsp 接口处存在任意文件读取漏洞&#xff0c;未经身份验证攻击者可通过该漏洞读取系统重要文件(如…

第18篇 Intel FPGA Monitor Program的使用<一>

Q&#xff1a;Intel FPGA Monitor Program开发工具可以支持Terasic的FPGA开发板使用吗&#xff1f; A&#xff1a;Intel FPGA Monitor Program 是Intel提供的适用于 ARM* Cortex*-A9 处理器和 Nios II 处理器的完整软件开发环境&#xff0c;它包括编译工具以及完整的调试功能&…