深度解析:ChatGPT全面测评——功能、性能与用户体验全景剖析

从去年底至今,由 OpenAI 发布的大规模语言模型 ChatGPT 引发了几乎所有科技领域从业者的高度关注。据瑞银集团的报告显示,自 2023 年 1 月起,仅两个月内,ChatGPT 的月活用户数便超过了 1 亿。

ChatGPT 被誉为“最强 AI”,这归功于其展示出的近似于人类的思考与回答模式,明显增强了对不同情境的适应能力。这种“更接近人类的思考方式”标志着 AI 语言模型的发展由量变走向了质变。

此外,ChatGPT 的火爆也带动了 AI 概念股的上涨,并促使业界重新评估了 AI 行业的巨大发展潜力。接着,搜索引擎市场也掀起了一场大战,谷歌 CEO Sundar Pichai 在官方博客上宣布推出谷歌的新一代 AI 对话系统 Bard 来应对 ChatGPT;同时,百度宣布将推出其类似 ChatGPT 的产品——文心一言(ERNIE Bot),计划在三月份对外开放测试;微软也更新了自家搜索引擎 Bing,该版本的底层 AI 技术正是 ChatGPT,还为 Edge 浏览器增添了新的 AI 增强功能,承诺将带来前所未有的网络浏览和在线信息检索体验。

为了全方位多维度评估 ChatGPT 的能力,InfoQ 测评室参照了中国信息通信研究院与中国人工智能产业发展联盟的相关标准和评估方法,从功能、性能、用户体验等多个方面对 ChatGPT 进行了评估。让我们一起看看这款应用是否真如传说中那么强大。

**第一部分:基础功能验证**

**自然语言输入**

在中文、俄语、日语、英语以及网络用语的识别测试中,ChatGPT 表现出了较好的上下文联系能力。

结论:ChatGPT 能够理解用户前后文的问题与补充,整个交互过程较为流畅。但在对网络用语、口语或省略关键成分的句子的理解上,可能不如预期。

**机器语言输入**

通过基础编程题目“鸡兔同笼”,测试 ChatGPT 在不同编程语言间的切换及代码格式、逻辑、注释的能力。

结论:高峰时段测试可能出现识别错误,非高峰时段代码通常准确可运行。只要对问题理解正确,生成的代码基本可行。对于未明确表达需求的句子,ChatGPT 也能很好理解。

**第二部分:基础性能测试**

**百科检索**

结论:对常规检索问题,ChatGPT 能给出较全面的答案。作为对话伙伴时,其表现优于拟人化对话。

**数学问答**

结论:对复杂数学问题的理解与推理能力不足。在被质疑时,ChatGPT 快速承认错误,并分析原因,但未能改正错误。

**文学交流**

结论:相比数学问题,ChatGPT 在文科问题上表现更佳。但用户需谨慎验证答案的准确性,有时给出的链接内容并不存在。

**知识推理**

结论:对已确定事实和理论

猜测均能提供充分、条理清晰的回答,体现出生成式 AI 的关键特征。

**第三部分:用户体验**

结论:对于开放性问题,ChatGPT 能提供有参考价值的答案,但并不适合直接作为标准答案采纳,其趣味性略显不足。

**总体结论**

功能体验层面:ChatGPT 具备基本功能,逻辑性强,能够给出看似正确且合理的答案。然而,对于具体内容的搜索,其准确性不能完全保证,仍需提问者自行判断。目前而言,将其与搜索引擎结合使用仍需解决许多问题。

尽管 ChatGPT 的对话能力源自于 RLHF(即从人类反馈中强化学习),这种模式可能会牺牲上下文学习的能力,以增加对话历史的建模和信息量。实际体验表明,简单的多轮对话处理相对容易。

在数学问答方面,将整个问题直接提交给 ChatGPT 往往不会得到正确答案,但通过将问题拆解成小问题,逐步引导 ChatGPT,可以更有效地获得正确答案。

使用场景层面:目前已有开发者利用 ChatGPT 编写简单代码,但处理复杂业务场景的代码时还需优化提问方式,将复杂问题分解为简单问题。

在企业级应用层面,已有企业将 ChatGPT 的能力整合至 BI、数据库等系统中,用户可以通过自然语言提出问题并获取答案。

此外,目前通过 ChatGPT 生成的高级词汇可用于进一步通过图像生成软件创建图像,通常这种方式的结果优于直接与图像生成软件对话的结果。

其他需注意事项:在高峰时间段(上午10:00至下午17:00),ChatGPT 提供错误答案的可能性更高。ChatGPT 本质上是 AIGC(人工智能生成内容),更适合创作类内容,对于既定事实内容的搜索能力还需进一步提高。

   背景:免费AI问答交流-GPT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/347038.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring6】1-12章源码级深入详解 IoC

一、Spring启示录 阅读以下代码: package com.powernode.oa.controller;import com.powernode.oa.service.UserService; import com.powernode.oa.service.impl.UserServiceImpl;public class UserController {private UserService userService new UserServiceI…

C# MES通信从入门到精通(11)——C#如何使用Json字符串

前言 我们在开发上位机软件的过程中,经常需要和Mes系统进行数据交互,并且最常用的数据格式是Json,本文就是详细介绍Json格式的类型,以及我们在与mes系统进行交互时如何组织Json数据。 1、在C#中如何调用Json 在C#中调用Json相关…

项目:双人五子棋对战-对战模块(6)

完整代码见: 邹锦辉个人所有代码: 测试仓库 - Gitee.com 当玩家进入到游戏房间后, 就要开始一局紧张而又刺激的五子棋对战了, 本文将就前端后端的落子与判断胜负的部分作详细讲解. 模块详细讲解 约定前后端交互的接口 首先是建立连接后, 服务器需要生成一些游戏的初始信息(可…

java:FeignClient通过RequestInterceptor自动添加header

示例代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2.3.12.RELEASE</version> </dependency> <dependency><groupId>o…

pytorch 自定义学习率更新 Poly

Poly 学习率调整策略需要继承_LRScheduler类&#xff0c;该类包含三个重要属性和两个重要方法 学习率与batch-size的关系 一般来说&#xff0c;batch-size的大小一般与学习率的大小成正比。batch-size越大一般意味着算法收敛方向的置信度越大&#xff0c;也可以选择较大的学…

【课程总结】Day6(下):机器学习项目实战–成人收入预测

机器学习项目实战&#xff1a;成人收入预测 项目目的 基于个人收入数据(包括教育程度、年龄、性别等)的数据集&#xff0c;通过机器学习算法&#xff0c;预测一个人的年收入是否超过5万美金。 数据集 地址&#xff1a;http://idatascience.cn/dataset-detail?table_id10036…

MEGALODON:突破传统,实现高效无限上下文长度的大规模语言模型预训练和推理

在人工智能领域&#xff0c;尤其是在自然语言处理&#xff08;NLP&#xff09;中&#xff0c;大模型&#xff08;LLMs&#xff09;的预训练和推理效率一直是研究的热点。最近&#xff0c;一项突破性的研究提出了一种新型神经网络架构——MEGALODON&#xff0c;旨在解决传统Tran…

2024/06/11--代码随想录算法1/17|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

理论基础 动态规划&#xff1a;当前状态由前面的状态推导而来 贪心&#xff1a;局部选最优 动态规划5步曲 确定dp数组&#xff08;dp table&#xff09;以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 509. 斐波那契数 力扣链接 动态规划5步曲 确定d…

33.星号三角阵(二)

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/742 题目描述 给定一个整数 𝑛,输出一个…

Linux用户,用户组,所有者权限分配,sftp用户权限分配

注意以下命令执行需要在root用户下执行 tenant命令切换至root命令 sudo -do root 删除用户信息 1.不删除用户主目录 userdel user_name 2.删除用户主目录 userdel -r user_name usermod命令修改用户账户权限 更改用户名 sudo usermod -l newusername oldusername 更…

QNX 7.0.0开发总结

1 QNX编译 1.1 基本概念 QNX可以直接使用Linux Makefile编译库和二进制&#xff0c;在Makefile文件中指定CCaarch64-unknown-nto-qnx7.0.0-g&#xff0c;或者CCx86_64-pc-nto-qnx7.0.0-g&#xff0c;保存退出后&#xff0c;运行source /qnx_sdk_path/qnxsdp-env.sh&#xff0c;…

React+TS前台项目实战(四)-- layout整体布局搭建

文章目录 前言一、Layout组件代码注释说明二、Content全局组件注释说明三、Header基础布局组件1. Header父级组件注释说明2. NavMenu导航子组件详细说明 四、效果展示总结 前言 本文主要讲Layout整体布局的构建以及全局内容盒子Content组件的使用。还包括了导航栏组件的基本封…

实现开源可商用的 ChatPDF RAG:密集向量检索(R)+上下文学习(AG)

实现 ChatPDF & RAG&#xff1a;密集向量检索&#xff08;R&#xff09;上下文学习&#xff08;AG&#xff09; RAG 是啥&#xff1f;实现 ChatPDF怎么优化 RAG&#xff1f; RAG 是啥&#xff1f; RAG 是检索增强生成的缩写&#xff0c;是一种结合了信息检索技术与语言生成…

python之点云数据读取与可视化

1、前言 将文件中点云数据进行读取进来&#xff0c;并进行数据处理&#xff0c;将处理后的点云数据进行可视化显示&#xff0c;是非常常见的操作。本博客介绍如何将文本形式的点云数据读取进来&#xff0c;并进行可视化展示。 2、点云可视化 点云可视化即将点云数据在三维空间…

亚马逊竞品分析之如何查找竞品

初选之后,要对产品进行竞品分析,查找竞品的方法: 1.Best Seller榜单查找 进入到该类目的BS榜单去找跟你选中的产品的竞品 看完BS榜单会找出一部分竞品 这个找相似也可以点击,是插件的一个以图搜图的功能,不过有的时候不太好使,某些同款产品可能搜不到。 Edge浏览器搭…

第7章 用户输入和 while 循环

第7章 用户输入和 while 循环 7.1 函数 input()的工作原理7.1.1 编写清晰的程序7.1.2 使用 int()来获取数值输入7.1.3 求模运算符 7.2 while 循环简介7.2.1 使用 while 循环7.2.2 让用户选择何时退出7.2.3 使用标志7.2.4 使用 break 退出循环7.2.5 在循环中使用 continue7.2.6 …

【Vue】Vuex概述

文章目录 一、使用场景二、优势三、注意 官网&#xff1a;https://vuex.vuejs.org/zh/ Vuex 是一个 Vue 的 状态管理工具&#xff0c;状态就是数据。 工具可以直接理解成插件 大白话&#xff1a;Vuex 是一个插件&#xff0c;可以帮我们管理 Vue 通用的数据 (多组件共享的数据)…

【Affine / Perspective Transformation】

文章目录 仿射变换介绍仿射变换 python 实现——cv2.warpAffine透视变换透视变换 python 实现——cv2.warpPerspective牛刀小试各类变换的区别与联系仿射变换和单应性矩阵透视变换和单应性矩阵 仿射变换介绍 仿射变换&#xff08;Affine Transformation&#xff09;&#xff0…

适配器模式和装饰器模式

文章目录 适配器模式1.引出适配器模式1.多功能转换插头2.基本介绍3.工作原理 2.类适配器1.基本介绍2.类图3.代码实现1.Voltage220V.java2.Voltage5V.java3.VoltageAdapter.java4.Phone.java5.Client.java6.结果 4.类适配器的注意事项 3.对象适配器1.基本介绍2.使用对象适配器改…

C51单片机 串口打印printf重定向

uart.c文件 #include "uart.h"void UartInit(void) //4800bps11.0592MHz {PCON | 0x80; //使能波特率倍速位SMODSCON 0x50; //8位数据,可变波特率。使能接收TMOD & 0x0F; //清除定时器1模式位TMOD | 0x20; //设定定时器1为8位自动重装方式TL1 0xF4; //设…