Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)

Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)

目录

    • Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现Transformer+BO-SVR多变量回归预测,Transformer+BO-SVR/Bayes-SVR(程序可以作为论文创新支撑,目前尚未发表);

2.Transformer提取特征后,贝叶斯算法选择最佳的SVM核函数参数c和g,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在预测任务中,结合Transformer和支持向量回归(SVR)的方法可以充分利用Transformer在特征提取上的强大能力和SVR在回归任务中的准确性。以下是一个详细的步骤,使用Transformer提取特征,然后结合贝叶斯优化(BO)来选择最佳的SVM核函数参数c(正则化参数)和g(gamma参数,用于RBF核)。

步骤1:数据准备
数据收集:收集并准备数据。

数据预处理:归一化数据,以确保模型训练的有效性。

步骤2:使用Transformer提取特征
构建Transformer模型:

根据数据维度和预测需求,设计一个适合的Transformer模型。包括输入嵌入层、多头注意力机制、位置编码等。

训练Transformer模型:

使用数据训练Transformer模型,目标是学习数据的潜在表示或特征。

特征提取:

从训练好的Transformer模型中提取特征。

步骤3:贝叶斯优化支持向量回归(BO-SVR)
初始化SVR模型:

选择一个支持向量回归模型,确定使用的核函数(RBF核)。

定义优化目标:

确定一个损失函数来衡量SVR模型的性能。

贝叶斯优化过程:

使用贝叶斯优化算法(如高斯过程优化)来搜索最优的c和g参数。

贝叶斯优化通过迭代地选择参数组合、评估模型性能并更新参数空间的概率分布来工作。在每次迭代中,算法会根据当前的最佳估计选择下一个最有希望的参数组合进行评估。

实施贝叶斯优化:

使用找到的最优c和g参数训练最终的SVR模型。

评估模型在验证集或测试集上的性能。

步骤4:Transformer+BO-SVR/Bayes-SVR整合
整合流程:将Transformer特征提取步骤和BO-SVR步骤整合到一个完整的预测流程中。

模型评估:使用交叉验证或独立测试集评估整个流程的性能。

注意事项

数据划分:确保在优化SVR模型时,使用交叉验证。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);
end%% 构建的Transformer模型
outputSize = 1;  %数据输出y的维度  
numChannels = f_;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;layers = [

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/3488.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nmap之企业漏洞扫描(Enterprise Vulnerability Scanning for Nmap)

简介 Namp是一个开源的网络连接端扫描软件,主要用于网络发现和安全审核。‌它可以帮助用户识别网络上的设备、分析它们的服务、检测操作系统类型,甚至发现潜在的安全漏洞。Nmap由Fyodor开发,最初是为了满足网络管理员的需求,但随…

windows下安装并使用node.js

一、下载Node.js 选择对应你系统的Node.js版本下载 Node.js官网下载地址 Node.js中文网下载地址??? 这里我选择的是Windows64位系统的Node.js20.18.0(LTS长期支持版本)版本的.msi安装包程序 官网下载: 中文网下载: 二、安…

Ability Kit-程序框架服务(类似Android Activity)

文章目录 Ability Kit(程序框架服务)简介Stage模型开发概述Stage模型应用组件应用/组件级配置UIAbility组件概述概述声明配置 生命周期概述生命周期状态说明Create状态WindowStageCreate**和**WindowStageDestroy状态WindowStageWillDestroy状态Foregrou…

Redis超详细入门教程(基础篇)

目录 一、什么是Redis 二、安装Redis 1、Windows系统安装 2、Linux系统安装 三、Redis通用命令 四、Redis基本命令 五、五种数据结构类型 5.1、String类型 5.2、List集合类型 5.3、Set集合类型 5.4、Hash集合类型 5.5、Zset有序集合类型 六、总结 一、什么是Redi…

黑马Java面试教程_P1_导学与准备篇

系列博客目录 文章目录 系列博客目录导学Why?举例 准备篇企业是如何筛选简历的(筛选简历的规则)HR如何筛选简历部门负责人筛选简历 简历注意事项简历整体结构个人技能该如何描述项目该如何描述 应届生该如何找到合适的练手项目项目来源找到项目后,如何深入学习项目…

在Linux上如何让ollama在GPU上运行模型

之前一直在 Mac 上使用 ollama 所以没注意,最近在 Ubuntu 上运行发现一直在 CPU 上跑。我一开始以为是超显存了,因为 Mac 上如果超内存的话,那么就只用 CPU,但是我发现 Llama3.2 3B 只占用 3GB,这远没有超。看了一下命…

算法(蓝桥杯)贪心算法7——过河的最短时间问题解析

一、题目描述 在漆黑的夜里,N位旅行者来到了一座狭窄且没有护栏的桥边。他们只带了一只手电筒,且桥窄得只够让两个人同时过。如果各自单独过桥,N人所需的时间已知;若两人同时过桥,则所需时间是走得较慢的那个人单独行动…

LDD3学习7--硬件接口I/O端口(以short为例)

1 理论 1.1 基本概念 目前对外设的操作,都是通过寄存器。寄存器的概念,其实就是接口,访问硬件接口,有I/O端口通信和内存映射I/O (Memory-Mapped I/O),I/O端口通信是比较老的那种,都是老的串口并口设备&am…

前端【3】--CSS布局,CSS实现横向布局,盒子模型

盒子分类 1、块级盒子 2、内联级盒子 3、内联块级盒子 4、弹性盒子 5、盒子内部分区 方法一:使用 float 普通盒子实现横向布局 方法二:使用 display: inline-block 内联块级元素实现横向布局 方法三:使用弹性盒子 flexbox&#xff0…

初学stm32 --- flash模仿eeprom

目录 STM32内部FLASH简介 内部FLASH构成(F1) FLASH读写过程(F1) 闪存的读取 闪存的写入 内部FLASH构成(F4 / F7 / H7) FLASH读写过程(F4 / F7 / H7) 闪存的读取 闪存的写入 …

LLM - 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数(PLM) 教程(2)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145188660 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scalin…

【数据库】MySQL数据库SQL语句汇总

目录 1.SQL 通用语法 2.SQL 分类 2.1.DDL 2.2.DML 2.3.DQL 2.4.DCL 3.DDL 3.1.数据库操作 3.1.1.查询 3.1.2.创建 3.1.3.删除 3.1.4.使用 3.2.表操作 3.2.1.查询 3.2.2.创建 3.2.3.数据类型 3.2.3.1.数值类型 3.2.3.2.字符串类型 3.2.3.3.日期时间类型 3.2…

JavaEE之CAS

上文我们认识了许许多多的锁,此篇我们的CAS就是从上文的锁策略开展的新概念,我们来一探究竟吧 1. 什么是CAS? CAS: 全称Compare and swap,字⾯意思:“比较并交换”,⼀个CAS涉及到以下操作: 我们假设内存中…

【Go】Go数据类型详解—指针

1. 前言 在我看来,一门编程语言语法的核心就在于数据类型。而各类编程语言的基本数据类型大致相同:int整型、float浮点型、string字符串类型、bool布尔类型,但是在一些进阶数据类型上就有所不同了。本文将会介绍Go语言当中核心的数据类型——…

前端性能-HTTP缓存

前言 开启 HTTP 缓存是提升前端性能的常见手段之一。通过缓存,浏览器可以临时存储资源,在后续请求中直接使用本地副本,从而有效减少 HTTP 请求次数,显著缩短网页加载时间。以下是 HTTP 缓存的几个关键点: 1、减少重复…

2024CVPR《HomoFormer》

这篇论文提出了一种名为HomoFormer的新型Transformer模型,用于图像阴影去除。论文的主要贡献和创新点如下: 1. 研究背景与动机 阴影去除的挑战:阴影在自然场景图像中普遍存在,影响图像质量并限制后续计算机视觉任务的性能。阴影的空间分布不均匀且模式多样,导致传统的卷积…

arcgis提取不规则栅格数据的矢量边界

效果 1、准备数据 栅格数据:dem或者dsm 2、栅格重分类 分成两类即可 3、新建线面图层 在目录下选择预先准备好的文件夹,点击右键,选择“新建”→“Shapefile”,新建一个Shapefile文件。 在弹出的“新建Shapefile”对话框内“名称”命名为“折线”,“要素类型”选…

函数(函数的概念、库函数、自定义函数、形参和实参、return语句、数组做函数参数、嵌套调用和链式访问、函数的声明和定义、static和extern)

一、函数的概念 •C语⾔中的函数:⼀个完成某项特定的任务的⼀⼩段代码 •函数又被翻译为子函数(更准确) •在C语⾔中我们⼀般会⻅到两类函数:库函数 ⾃定义函数 二、库函数 1 .标准库和头文件 •C语⾔的国际标准ANSIC规定了⼀…

Docker私有仓库管理工具Registry

Docker私有仓库管理工具Registry 1 介绍 Registry是私有Docker仓库管理工具,Registry没有可视化管理页面和完备的管理策略。可借助Harbor、docker-registry-browser完成可视化和管理。Harbor是由VMware开发的企业级Docker registry服务。docker-registry-browser是…

Adobe与MIT推出自回归实时视频生成技术CausVid。AI可以边生成视频边实时播放!

传统的双向扩散模型(顶部)可提供高质量的输出,但存在显著的延迟,需要 219 秒才能生成 128 帧的视频。用户必须等待整个序列完成才能查看任何结果。相比之下CausVid将双向扩散模型提炼为几步自回归生成器(底部&#xff…