Sentence Transformers x SwanLab:可视化Embedding训练

Sentence Transformers(又名SBERT)是访问、使用和训练文本和图像嵌入(Embedding)模型的Python库。

在这里插入图片描述

你可以使用Sentence Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

1. 引入SwanLabCallback

from swanlab.integration.huggingface import SwanLabCallback

SwanLabCallback是适配于HuggingFace系列工具(Transformers等)的日志记录类。

SwanLabCallback可以定义的参数有:

  • project、experiment_name、description 等与 swanlab.init 效果一致的参数, 用于SwanLab项目的初始化。
  • 你也可以在外部通过swanlab.init创建项目,集成会将实验记录到你在外部创建的项目中。

2. 传入Trainer

from swanlab.integration.huggingface import SwanLabCallback
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer...# 实例化SwanLabCallback
swanlab_callback = SwanLabCallback(project="hf-visualization")trainer = SentenceTransformerTrainer(...# 传入callbacks参数callbacks=[swanlab_callback],
)trainer.train()

3.完整案例代码

from datasets import load_dataset
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer
from sentence_transformers.losses import MultipleNegativesRankingLoss
from swanlab.integration.huggingface import SwanLabCallbackmodel = SentenceTransformer("bert-base-uncased")train_dataset = load_dataset("sentence-transformers/all-nli", "pair", split="train[:10000]")
eval_dataset = load_dataset("sentence-transformers/all-nli", "triplet", split="dev")
mnrl_loss = MultipleNegativesRankingLoss(model)swanlab_callback = SwanLabCallback(project="sentence-transformers", experiment_name="bert-all-nli")trainer = SentenceTransformerTrainer(model=model,train_dataset=train_dataset,eval_dataset=eval_dataset,loss=mnrl_loss,callbacks=[swanlab_callback],
)trainer.train()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350110.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

XSS攻击

黑客怎么拿到你的cookies呢? 浏览器可以执行脚本 网站有留言板 黑客发现留言板有xss漏洞,没有做过滤 一般就是网络管理员登录后台查看留言数据,然后就会产生cookies 然后之前黑客留言的东西就包含恶意的程序(不仅写了留言&am…

运维系列.在Docker中使用Grafana

运维专题 在Docker中使用Grafana - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_2855026…

[数据集][目标检测]减速带检测数据集VOC+YOLO格式5400张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5400 标注数量(xml文件个数):5400 标注数量(txt文件个数):5400 标注…

AI图书下载:《ChatGPT打造赚钱机器》

这本书《ChatGPT打造赚钱机器》(ChatGPT Money Machine 2024 The Ultimate Chatbot Cheat Sheet)是一本全面的指南,旨在帮助读者快速掌握如何利用ChatGPT等人工智能技术创造收益。 以下是各章节内容的总结: **引言** 介绍了人工智…

docker环境中配置phpstorm php xdebug调试工具

本文介绍通过docker compose的使用方式 第一步:在php镜像中安装phpxdebug扩展,比如php7.4对应的是xdebug3.1.6 第二步:设置项目中的docker-compose.yml docker-compose 增加开启xdebug的环境变量,host.docker.internal是宿主机的地址&#…

Java版+ SaaS应用+接口技术RESTful API 技术开发的智慧医院HIS系统源码 专注医院管理系统研发 支持二开

Java版 SaaS应用接口技术RESTful API WebSocket WebService技术开发的智慧医院HIS系统源码 专注医院管理系统研发 支持二开 医院住院管理系统(Hospital Information System简称HIS)是一门医学、信息、管理、计算机等多种学科为一体的边缘科学&#xff…

Aivis:AI声音模仿系统的创新之旅

在人工智能技术的不断进步中,声音合成技术也迎来了新的发展机遇。Aivis项目正是这一领域的杰出代表,它提供了一个全流程的工具,让用户能够从数据集的创建到学习再到推理,一站式地生成逼真的语音。 Aivis是一个基于Bert-VITS2模型的…

基于hispark_taurus开发板示例学习OpenHarmony编译构建系统(2)

3、hispark_taurus产品解决方案-Vendor 产品解决方案为基于开发板的完整产品,主要包含产品对OS的适配、组件拼装配置、启动配置和文件系统配置等。产品解决方案的源码路径规则为:vendor/{产品解决方案厂商}/{产品名称}_。_产品解决方案也是一个特殊的组…

mac下Xcode在iphone真机上测试运行iOS软件

最近一个需求需要在iPhone真机上测试一个视频直播的项目。 需要解决如何将项目 app 安装到真机上 在进行真机调试。 安装Xcode 直接在App Store上搜索Xcode安装即可。 关键是要安装Simulator。项目需要安装iOS17.5但是由于安装包太大,并且网络不稳定的原因。在Xco…

Apache网页优化

一、网页压缩与缓存 1.1网页压缩 网站访问速度影响因素:应用程序响应速度、网络带宽、服务器性能、与客户端之间网络传输速度等。其中最重要的是一个因素是Apache本身,因此提升Apache执行速度(使用网页压缩)是性价比最高的选择。…

Lua实现自定义函数面向对象编程

本文目录 1、引言2、原理3、实例4、层析验证 文章对应视频教程: 暂无,可以关注我的B站账号等待更新。 点击图片或链接访问我的B站主页~~~ 1、引言 在现代软件开发中,面向对象编程(OOP)已经成为一种广泛使用的编程范式…

python数据分析---ch10 数据图形绘制与可视化

python数据分析--- ch10 python数据图形绘制与可视化 1. Ch10--python 数据图形绘制与可视化1.1 模块导入1.2 数据导入 2. 绘制直方图2.1 添加图表题2.2 添加坐标轴标签 3. 绘制散点图4. 绘制气泡图5. 绘制箱线图5.1 单特征的箱线图5.2 多特征的箱线图 6. 绘制饼图7. 绘制条形图…

每日5题Day25 - LeetCode 121 - 125

每一步向前都是向自己的梦想更近一步,坚持不懈,勇往直前! 第一题:121. 买卖股票的最佳时机 - 力扣(LeetCode) class Solution {public int maxProfit(int[] prices) {if(prices.length 1){return 0;}//dp…

热门开源项目推荐: diffusionbee

随着AI技术的快速发展,深度学习和机器学习已经成为各领域的热门话题。Stable Diffusion是一种强大的深度学习模型,它能够在图像生成和处理方面展现出惊人的效果。为了让更多用户能够轻松地使用Stable Diffusion,Diffusion Bee应运而生&#x…

el-table表头文字换行或者修改字体颜色样式

例如 <el-table:data"tableData":header-cell-style"headClass" style"width: 100%;" border ><el-table-columnprop"address"label"生产工序"align"center"></el-table-column> //重点看这里…

【2024算力大会分会 | SPIE独立出版 | 往届均已完成EI检索】2024云计算、性能计算与深度学习国际学术会议(CCPCDL 2024)

【2024算力大会分会 | SPIE出版】 2024云计算、性能计算与深度学习国际学术会议(CCPCDL 2024) 2024 International conference on Cloud Computing, Performance Computing and Deep Learning *CCPCDL往届均已完成EI检索&#xff0c;最快会后4个半月完成&#xff01; 一、…

Leaflet集成wheelnav在WebGIS中的应用

目录 前言 一、两种错误的实现方式 1、组件不展示 2、意外中的空白 二、不同样式的集成 1、在leaflet中集成wheelnav 2、给marker绑定默认组件 2、面对象绑定组件 3、如何自定义样式 三、总结 前言 在之前的博客中&#xff0c;我们曾经介绍了使用wheelnav.js构建酷炫…

[深度学习]基于C++和onnxruntime部署yolov10的onnx模型

基于C和ONNX Runtime部署YOLOv10的ONNX模型&#xff0c;可以遵循以下步骤&#xff1a; 准备环境&#xff1a;首先&#xff0c;确保已经下载后指定版本opencv和onnruntime的C库。 模型转换&#xff1a;按照官方源码&#xff1a;https://github.com/THU-MIG/yolov10 安装好yolov…

vue2 + element-ui,前端配置化表单封装(2024-06-14)

技术栈是 vue2 element-ui&#xff0c;主要能解决的问题就是 提高代码复用能力、提升开发效率&#xff0c;特别是需要开发多个大型表单系统的&#xff0c;配置化可以极大的提升效率&#xff0c;让你上班摸鱼不再是梦想&#xff01;为了早点下班&#xff0c;我们接着往下看吧&a…

MySQLWorkbench导出sql文件

MySQLWorkbench导出sql文件 前言效果图导出操作选择要导出的数据库遇到的问题解决问题 查看mysql路径 前言 在完成数据库搭建之后&#xff0c;需要为上线做准备&#xff0c;那么就需要导出数据库的建库sql了 本篇文章讲解的是mysql Workbench 导出数据建库脚本 效果图 导出操…