深度学习 - CNN

第一部分:基础知识

1. 什么是卷积神经网络(CNN)

定义和基本概念
卷积神经网络(CNN)是一种专门用于处理具有网格结构数据(如图像)的深度学习模型。它们在图像识别和计算机视觉领域表现尤为突出。与传统的全连接神经网络不同,CNN利用局部连接和共享权重的方式,能够有效减少参数数量,提高计算效率。

CNN在图像处理中的优势

  • 局部连接:只处理图像的局部区域,减少参数量。
  • 共享权重:同一个滤波器在图像不同位置扫描,进一步减少参数量。
  • 池化操作:通过降采样减少数据维度,提取重要特征。
2. CNN的基本结构

输入层
处理输入数据,比如一张图片,通常用三维数组表示(宽度,高度,颜色通道数)。

卷积层
通过应用不同的滤波器来提取特征。滤波器滑过输入图像,生成特征映射。

池化层
进行降采样,减少数据维度,提高计算效率,同时保留重要特征。

全连接层
将卷积层和池化层提取的特征展开成一维向量,并通过多个全连接层进行分类。

输出层
根据具体任务(如分类、回归)输出最终结果。
在这里插入图片描述

第二部分:深入理解

卷积操作(Convolution Operation)

实例:
假设有一个3x3的输入图像和一个2x2的滤波器:

输入图像:

1 2 3
4 5 6
7 8 9

滤波器:

1 0
0 -1

卷积操作是将滤波器应用于图像的每个局部区域,计算它们的点积和:

1*1 + 2*0 + 4*0 + 5*(-1) = 1 - 5 = -4
2*1 + 3*0 + 5*0 + 6*(-1) = 2 - 6 = -4
4*1 + 5*0 + 7*0 + 8*(-1) = 4 - 8 = -4
5*1 + 6*0 + 8*0 + 9*(-1) = 5 - 9 = -4

最终得到的特征映射:

-4 -4
-4 -4
激活函数(ReLU, Sigmoid, Tanh等)

实例:
ReLU(Rectified Linear Unit):f(x) = max(0, x)
假设输入为[-1, 2, -3, 4],经过ReLU后:

ReLU([-1, 2, -3, 4]) = [0, 2, 0, 4]
池化操作(Max Pooling, Average Pooling)

实例:
Max Pooling:
输入:

1 2
3 4

最大池化结果:

4

Average Pooling:
输入:

1 2
3 4

平均池化结果:

(1+2+3+4)/4 = 2.5
损失函数(Cross-Entropy Loss等)

实例:
假设有两个类别,实际标签为[1, 0](表示第一类),预测概率为[0.8, 0.2]。
交叉熵损失计算:

Loss = - (1 * log(0.8) + 0 * log(0.2)) = - log(0.8) = 0.223

第三部分:实战应用

1. 使用PyTorch实现CNN

安装和配置PyTorch

pip install torch torchvision

构建简单的CNN模型

import torch.nn as nn
import torch.nn.functional as Fclass SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, 3, 1)  # 3个输入通道,16个输出通道,3x3的卷积核,步长1self.conv2 = nn.Conv2d(16, 32, 3, 1)self.fc1 = nn.Linear(32 * 6 * 6, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(self.conv1(x))x = F.max_pool2d(x, 2, 2)x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2, 2)x = x.view(-1, 32 * 6 * 6)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)

数据预处理

import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoadertransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])trainset = CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True)

训练和评估模型

import torch.optim as optimmodel = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)for epoch in range(10):  # 训练10个epochrunning_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:    # 每100个批次打印一次print(f'Epoch {epoch + 1}, Batch {i + 1}, Loss: {running_loss / 100:.3f}')running_loss = 0.0print('Finished Training')
2. 经典CNN架构

LeNet
由Yann LeCun提出,适用于手写数字识别。

AlexNet
由Alex Krizhevsky提出,首次在ImageNet竞赛中大放异彩。

VGGNet
由Oxford大学Visual Geometry Group提出,使用多个小卷积核代替大卷积核。

GoogLeNet/Inception
由Google提出,使用Inception模块提高模型性能。

ResNet
由Microsoft提出,引入残差连接解决深层网络训练困难问题。

DenseNet
由Cornell大学提出,通过密集连接提高梯度流动。

3. 转移学习与预训练模型

使用预训练模型

from torchvision import modelsresnet = models.resnet18(pretrained=True)

微调(Fine-Tuning)

for param in resnet.parameters():param.requires_grad = Falseresnet.fc = nn.Linear(resnet.fc.in_features, 10)

第四部分:高级主题

1. 优化与调整

学习率调度

scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

正则化方法

self.dropout = nn.Dropout(0.5)  # 在网络中使用dropout防止过拟合

批量归一化

self.bn1 = nn.BatchNorm2d(16)  # 在卷积层后添加批量归一化层
2. 增强技术

数据增强

transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomCrop(32, padding=4),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

混合精度训练

from torch.cuda.amp import GradScaler, autocastscaler = GradScaler()for epoch in range(10):for inputs, labels in trainloader:optimizer.zero_grad()with autocast():outputs = model(inputs)loss = criterion(outputs, labels)scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()
3.模型参数推荐
数据集规模数据集大小推荐的卷积层数量推荐的卷积核数(每层)推荐的全连接层数量推荐的全连接神经元数(每层)说明
小型数据集1,000 - 10,0002 - 332 - 641 - 2128 - 256例如MNIST等简单任务,可以用少量卷积层和全连接层。
中型数据集10,000 - 100,0003 - 564 - 1282 - 3256 - 512例如CIFAR-10等任务,需要更多的卷积层来提取特征。
大型数据集100,000 - 1,000,0005 - 10128 - 2562 - 4512 - 1024例如CIFAR-100、ImageNet子集等任务,复杂特征需要更多的卷积层。
超大型数据集1,000,000+10+256+3 - 51024+例如完整的ImageNet数据集或更大规模的任务,深度网络(如ResNet)通常是必要的。
小型数据集示例(如MNIST)
import torch.nn as nn
import torch.nn.functional as Fclass SmallCNN(nn.Module):def __init__(self):super(SmallCNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.fc1 = nn.Linear(64 * 7 * 7, 128)  # 假设输入图像大小为28x28self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 64 * 7 * 7)x = F.relu(self.fc1(x))x = self.fc2(x)return x

在这个示例中:

  • 卷积层数量:2层(conv1conv2
  • 每层卷积核数:32和64
  • 全连接层数量:2层(fc1fc2
  • 每层全连接神经元数:128和10
中型数据集示例(如CIFAR-10)
import torch.nn as nn
import torch.nn.functional as Fclass MediumCNN(nn.Module):def __init__(self):super(MediumCNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.fc1 = nn.Linear(256 * 4 * 4, 512)  # 假设输入图像大小为32x32self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = self.pool(F.relu(self.conv3(x)))x = x.view(-1, 256 * 4 * 4)x = F.relu(self.fc1(x))x = self.fc2(x)return x

在这个示例中:

  • 卷积层数量:3层(conv1, conv2conv3
  • 每层卷积核数:64, 128和256
  • 全连接层数量:2层(fc1fc2
  • 每层全连接神经元数:512和10
大型数据集示例(如ImageNet子集)
import torch.nn as nn
import torch.nn.functional as Fclass LargeCNN(nn.Module):def __init__(self):super(LargeCNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)self.conv4 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1)self.conv5 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.fc1 = nn.Linear(1024 * 1 * 1, 1024)  # 假设输入图像大小为32x32self.fc2 = nn.Linear(1024, 512)self.fc3 = nn.Linear(512, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = self.pool(F.relu(self.conv3(x)))x = self.pool(F.relu(self.conv4(x)))x = self.pool(F.relu(self.conv5(x)))x = x.view(-1, 1024 * 1 * 1)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x

在这个示例中:

  • 卷积层数量:5层(conv1, conv2, conv3, conv4conv5
  • 每层卷积核数:64, 128, 256, 512和1024
  • 全连接层数量:3层(fc1, fc2fc3
  • 每层全连接神经元数:1024, 512和10
4. CNN的其他应用

对抗生成网络(GANs)
生成与判别网络相互竞争,提高生成图像质量。

目标检测(Object Detection)
检测图像中的多个对象并定位它们的边界框。

语义分割(Semantic Segmentation)
将图像中的每个像

素分类到特定类别。

第五部分:项目与实践

1. 手写数字识别(MNIST)

项目介绍
MNIST数据集是一个经典的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。每个样本是28x28的灰度图像,表示从0到9的数字。

步骤

  1. 数据准备
  2. 模型构建
  3. 模型训练
  4. 模型评估

详细过程

  1. 数据准备
import torch
import torchvision
import torchvision.transforms as transformstransform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)
  1. 模型构建
import torch.nn as nn
import torch.nn.functional as Fclass SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.fc1 = nn.Linear(12 * 12 * 64, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(self.conv1(x))x = F.max_pool2d(self.conv2(x), 2)x = torch.flatten(x, 1)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)
  1. 模型训练
import torch.optim as optimmodel = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(5):  # 训练5个epochmodel.train()running_loss = 0.0for inputs, labels in trainloader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
  1. 模型评估
model.eval()
correct = 0
total = 0
with torch.no_grad():for inputs, labels in testloader:outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy: {100 * correct / total:.2f}%')
2. 图像分类(CIFAR-10)

项目介绍
CIFAR-10数据集包含60,000张32x32的彩色图像,分为10个类别。每个类别有6,000张图像。

步骤

  1. 数据准备
  2. 模型构建
  3. 模型训练
  4. 模型评估

详细过程

  1. 数据准备
transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomCrop(32, padding=4),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)
  1. 模型构建
class CIFAR10CNN(nn.Module):def __init__(self):super(ImprovedImageClassifier, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3, stride=1, padding=1)self.bn1 = nn.BatchNorm2d(32)self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(64)self.pool = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1)self.bn3 = nn.BatchNorm2d(128)self.dropout = nn.Dropout(0.1)  # 加入Dropout层self.fc1 = nn.Linear(128 * 4 * 4, 256)self.fc2 = nn.Linear(256, 128)self.out = nn.Linear(128, 10)def forward(self, x):x = self.pool(torch.relu(self.bn1(self.conv1(x))))x = self.pool(torch.relu(self.bn2(self.conv2(x))))x = self.pool(torch.relu(self.bn3(self.conv3(x))))x = x.view(-1, 128 * 4 * 4)x = torch.relu(self.fc1(x))x = self.dropout(x)x = torch.relu(self.fc2(x))x = self.out(x)return x
  1. 模型训练
model = CIFAR10CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(10):  # 训练10个epochmodel.train()running_loss = 0.0for inputs, labels in trainloader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
  1. 模型评估
# 构建数据加载器
dataloader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, shuffle=True)
model.eval()# 计算精度和其他评估指标
y_true = []
y_pred = []
with torch.no_grad():for x, y in dataloader:x = x.to(device)y = y.to(device)output = model(x)y_pred.extend(torch.argmax(output, dim=-1).cpu().numpy())y_true.extend(y.cpu().numpy())# 混淆矩阵和分类报告
conf_mat = confusion_matrix(y_true, y_pred)
class_report = classification_report(y_true, y_pred, target_names=train_dataset.classes)# 打印分类报告
print("Classification Report:\n", class_report)# 绘制混淆矩阵
plt.figure(figsize=(10, 8))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap='Blues', xticklabels=train_dataset.classes, yticklabels=train_dataset.classes)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()
3. 自然图像识别(ImageNet)

项目介绍
ImageNet数据集包含超过100万张带标签的高分辨率图像,分为1000个类别。它是深度学习和计算机视觉领域的标准数据集。

步骤

  1. 使用预训练模型
  2. 微调模型
  3. 模型评估

详细过程

  1. 使用预训练模型
from torchvision import modelsmodel = models.resnet18(pretrained=True)
  1. 微调模型
# 冻结除最后一层外的所有层
for param in model.parameters():param.requires_grad = False# 替换最后一层
model.fc = nn.Linear(model.fc.in_features, 1000)# 仅训练最后一层
optimizer = optim.Adam(model.fc.parameters(), lr=0.001)
  1. 模型训练
for epoch in range(5):  # 训练5个epochmodel.train()running_loss = 0.0for inputs, labels in trainloader:optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
  1. 模型评估
model.eval()
correct = 0
total = 0
with torch.no_grad():for inputs, labels in testloader:outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy: {100 * correct / total:.2f}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350620.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚函数机制-动态绑定的应用

虚函数使得程序在运行的时候根据指针指向对象的类型来确定调用哪个函数。 下图中:都为静态绑定。因为在编译器就确定了可以调用的函数 此时当基类指针指向派生类对象时,因为没有virtual关键字,所以在编译阶段就根据指针类型确定了要指向的函…

专家解读 | NIST网络安全框架(3):层级配置

NIST CSF在核心部分提供了六个类别的关键功能和子功能,并围绕CSF的使用提供了层级(Tier)和配置(Profile)两种工具,使不同组织和用户更方便有效地使用CSF,本文将深入探讨CSF层级和配置的主要内容…

183.二叉树:二叉搜索树中的众数(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* Tre…

STM32 printf 重定向到CAN

最近在调试一款电机驱动板 使用的是CAN总线而且板子上只有一个CAN 想移植Easylogger到上面试试easylogger的效果&#xff0c;先实现pritnf的重定向功能来打印输出 只需要添加以下代码即可实现 代码 #include <stdarg.h> uint8_t FDCAN_UserTxBuffer[512]; void FDCAN_p…

shell文本三剑客 awk 和 grep

awk 前言 AWK是一种优良的文本处理工具。它不仅是 Linux中也是任何环境中现有的功能最强大的数据处理引擎之一。 Linux中最常用的文本处理工具有grep&#xff0c;sed&#xff0c;awk。行内将之称为文本三剑客&#xff0c;就功能量和效率来看&#xff0c;awk是当之无愧的文本三…

本地密码记录工具-KeePass

文章目录 软件界面软件下载KeePass配置KeePass修改中文创建数据库配置数据库锁定配置账户密码为不同应用配置账号密码插件安装及使用 数据库同步 在此之前&#xff0c;没有使用过类似的账户密码记录工具&#xff0c;甚至完全没有接触过&#xff0c;由于Edge浏览器自带保存密码并…

【Kafka】Kafka Producer 分区-05

【Kafka】Kafka Producer 分区-05 1. 分区的好处2. 分区策略2.1 默认的分区器 DefaultPartitioner 3. 自定义分区器 1. 分区的好处 &#xff08;1&#xff09;便于合理使用存储资源&#xff0c;每个Partition在一个Broker上存储&#xff0c;可以把海量的数据按照分区切割成一块…

什么是DMZ?路由器上如何使用DMZ?

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 DMZ 📒🚀 DMZ的应用场景💡 路由器设置DMZ🎈 注意事项 🎈⚓️ 相关链接 ⚓️📖 介绍 📖 在网络管理中,DMZ(Demilitarized Zone,隔离区)是一个特殊的网络区域,常用于将公共访问和内部网络隔离开来。DMZ功能允许…

完美的移动端 UI 风格让客户无可挑剔

完美的移动端 UI 风格让客户无可挑剔

GDB:从零开始入门GDB

目录 1.前言 2.开启项目报错 3.GDB的进入和退出 4.GDB调试中查看代码和切换文件 5.GDB调试中程序的启动和main函数传参 6.GDB中断点相关的操作 7.GDB中的调试输出指令 8.GDB中自动输出值指令 9.GDB中的调试指令 前言 在日常开发中&#xff0c;调试是我们必不可少的技能。在专业…

算法day26

第一题 429. N 叉树的层序遍历 本题的要求我们可以通过队列来辅助完成层序遍历&#xff1b; 如下图的n叉树&#xff1a; 步骤一&#xff1a; 我们定义一个队列&#xff0c;先进行根节点入队列操作&#xff1b; 步骤二&#xff1a; 我们进行当前队列每一个元素的出队列操作&…

功能强大的API函数FindFirstFile使用介绍(附源码)

在处理文件的相关代码中,会频繁使用到Windows系统API函数FindFirstFile,这个函数功能很强大,很多功能都不开它。本文就根据我们在项目中使用该函数的情况,来大概地梳理一下使用FindFirstFile都可以实现哪些常用的功能。 1、FindFirstFile函数声明与WIN32_FIND_DATA结构体 我…

接口测试详解

接口测试详解 本文主要讲软件接口 一、什么是接口&#xff1f;硬件接口&#xff1a;硬件接口指的是硬件提供给外界的一种实体。主要作用是内部数据分离出外 部的沟通方法 目的是&#xff1a;沟通外部来改变内部的数据。如&#xff1a;USB接口&#xff0c;投影仪接口 软件接口…

Hadoop 2.0:主流开源云架构(三)

目录 四、Hadoop 2.0体系架构&#xff08;一&#xff09;Hadoop 2.0公共组件Common&#xff08;二&#xff09;分布式文件系统HDFS&#xff08;三&#xff09;分布式操作系统Yarn&#xff08;四&#xff09;Hadoop 2.0安全机制简介 四、Hadoop 2.0体系架构 &#xff08;一&…

c++使用nlohmann读取json文件

下载&#xff1a; GitHub - nlohmann/json: JSON for Modern C 解压&#xff1a; 包含头文件&#xff1a; 要包含的头文件和要使用的命名空间&#xff1a; #include <nlohmann/json.hpp>using json nlohmann::json; 测试文件&#xff1a; 代码&#xff1a; #include…

Vscode中使用make命令

前言 需要注意&#xff0c;如下操作需要进行网络代理&#xff0c;否则会出现安装失败的情况 安装 第一步 — 安装MingGW &#xff08;1&#xff09;进入官网下载 &#xff08;2&#xff09;下载完成之后&#xff0c;双击exe文件 &#xff08;3&#xff09;点击Install &#x…

远程桌面端口,远程桌面改端口有哪些方法

方法一&#xff1a;通过修改注册表 步骤一&#xff1a;打开注册表编辑器 按下 Windows键R 打开“运行”对话框。输入 regedit 并按 Enter 打开注册表编辑器。 步骤二&#xff1a;定位到远程桌面服务的端口设置 导航至第一个注册表路径&#xff1a;HKEY_LOCAL_MACHINE\SYSTE…

抢占人工智能行业红利,前阿里巴巴产品专家带你15天入门AI产品经理

前言 当互联网行业巨头纷纷布局人工智能&#xff0c;国家将人工智能上升为国家战略&#xff0c;藤校核心课程涉足人工智能…人工智能领域蕴含着巨大潜力&#xff0c;早已成为业内共识。 面对极大的行业空缺&#xff0c;不少人都希望能抢占行业红利期&#xff0c;进入AI领域。…

多线程中run()和start()的区别

我们知道&#xff0c;在多线程中 Thread thread new Thread(runnable); thread.start();以及 thread.run();都可以执行runnable中run方法下的代码&#xff0c;但是二者又有所不同 下面给出一段代码用以体现二者的区别&#xff1a; 以下代码中&#xff0c;通过thread.start()启…

探索互联网寻址机制 | 揭秘互联网技术的核心,解析网络寻址

揭秘互联网技术的核心&#xff0c;解析网络寻址题 前提介绍局域网地址IP地址的分配方式动态IP分配机制内部网&#xff08;intranet&#xff09;ICANN负责IP分配DHCP协议获取IP地址 域名系统域名是什么域名工作方式hosts文件存储域名映射关系DNS分布式数据库DNS域名解析 Java进行…