C++之std::type_identity

目录

1.简介

2.C++20的std::type_identity

3.使用 type_identity

3.1.阻止参数推导

3.1.1.模板参数推导过程中的隐式类型转换

3.1.2.强制显式实例化

3.2.阻止推断指引

3.3.类型保持

3.4.满足一些稀奇古怪的语法

4.示例

5.总结


1.简介

   std::type_identity 是 C++17 引入的一个实用工具,用于确保类型别名保持其引用的完整性。在某些模板元编程的场景中,尤其是在与类型萃取(type traits)和完美转发(perfect forwarding)相关的场景中,保持类型的“原样”传递是非常重要的。

   std::type_identity 是一个简单的模板,它定义了一个别名 type,该别名简单地重新声明了其模板参数类型。但重要的是,它不会修改或“破坏”传递给它的类型。

        在 C++17 之前,要实现这样的效果通常需要一些技巧,比如使用结构体的模板特化或复杂的继承层次结构。但是,std::type_identity 使得这个过程变得更加简单和直观。

        我们用一个例子来说明这个问题,尽管这个例子有点微不足道:

template <class T>
T Add(T a, T b) {return a + b;
}Add(4.2, 1); //错误

        尽管将整数与浮点数累加并返回浮点数是 Add 函数应该支持的运算,但是编译器却在这里报错,因为在参数推导的时候,它根据第一个参数推导出 T 是 double 类型,但是根据第二个参数推导出 T 是 int 类型,这产生了矛盾,于是编译器罢工了。

        解决这个问题的方法很简单,比如我们可以谢绝自动推导,用显式实例化(Explicit instantiation)的方式,只是每次调用的时候会麻烦一点:

foo<double>(4.2, 1);

        当然,更常用的实践是借助 C++ 的非推导语境(non-deduced contexts)规避不希望的参数推导,比如下面这种 identity 惯用法:

template< class T >
struct identity {using type = T;
};template <class T>
T Add(T a, typename identity<T>::type b) {return a + b;
}//相当于 double Add(double a, double b)
foo(4.2, 1); //OK, T 被推导为 double

        根据 identity 的定义,identity<T>::type 其实就是 T,为什么加上这个多此一举的东西就 OK 了?这并不是什么黑魔法,它只是借助了模板参数推导规则中最常用的一种非推导语境,即:

对于模板参数中出现的嵌套类型表达式,域解析运算符(::)左边的嵌套名称说明符如果是个限定性说明符(Qualified identifiers),则该嵌套名称说明符不参与模板参数推导。

        所以用了 identity 大法之后,"::type" 左边的 identity<T> 就不参与模板参数推导,T 就是根据第一个参数推导出的 double,identity<T>::type 就也是 double 了。

2.C++20的std::type_identity

        C++ 20 的 type traits 增加了一个 type_identity,其作用和上一节中自定义的 identity<T> 一样,只是不用重复发明轮子了。直接使用 type_identity 的代码是这个样子的:

template <class T>
T Add(T a, typename std::type_identity<T>::type b) {return a + b;
}

        C++ 还提供了一个别名:

template< class T >
using type_identity_t = typename type_identity<T>::type;

        使用 type_identity_t<T> 的代码更简单一点:

template <class T>
T Add(T a, std::type_identity_t<T>  b) {return a + b;
}

3.使用 type_identity

3.1.阻止参数推导

3.1.1.模板参数推导过程中的隐式类型转换

        其实建立非推导语境的常用目的是让一个模板参数的类型依赖另一个模板参数的推导结果,这种非推导语境的建立还会带来一些意想不到的效果。比如这个例子:

template <typename ...args_t>
void func(std::function<void(args_t...)> function_, args_t ...args){/// do something here
}void func2(std::function<void(int)> function_,  int args) {/// do something here
}void test() {func([](int a){ }, 1); //编译错误func2([](int a){ }, 1); //没有问题
}

        代码中的 func 和 func2 函数的作用相当于一个调用器(Invoker),区别就是 func 是个函数模板,而 func2 是个普通函数。test 函数中调用 func 会导致编译错误,调用 func2 确实正常的。func2 能正常调用说明从 lambda 到 std::function 的隐式转换是没有问题的,那为什么 func 就不能转换呢?

        原因就是在参数推导的时候是不考虑隐式类型转换的,func 是函数模板,它的第一个参数类型 std::function<> 依赖于对模板参数 args_t 的推导结果,推导出来的 std::function<void(args_t...)> 无法与实参传入的 lambda 表达式类型进行匹配,导致推导最终失败,实际上并没有产生一个类似 :

void func(std::function<void(int)> function_, int)

的推导结果,在随后的重载决议时虽然允许隐式转换,但是因为没有一个上述结果能与之进行转换,最终的结果就是编译失败,错误原因是没有一个 func 的实例能匹配 lambda 表达式的调用。func2 能调用成功是因为 func2 是普通函数,此处会进行隐式类型转换。

        此时如果让 std::function<void(args_t...)> 不参与推导,那么它就不需要与实参传入的 lambda 表达式进行匹配,也就是不会导致推导错误,就能得到上面的推导结果,于是在随后的重载决议的时候就能通过隐式类型转换完成函数调用。此时就需要用 type_identity 建立非推导语境了,我们将 func 的设计改成这样就可以了:

template <typename... args_t>
void func(std::type_identity_t<std::function<void(args_t...)>> function_, args_t ...args) {/// do something here
}

3.1.2.强制显式实例化

        利用 type_identity,还可以在设计上要求用户在使用函数模板的时候必须显式指定模板参数,比如这个例子:

template <typename U, typename V>
void foo(std::type_identity_t<U> u, V v) {  ... }foo<double>(5.9, 6); //编译正确
foo<int>(5.9, 6); // 编译正确,此处发生隐式类型转换
foo(5.3, 6.2); //错误

        foo 函数从设计上强制用户必须指定第一个参数的类型,目的可能是想允许第一个参数的隐式类型转换,也可能是其他目的,总之,使用 type_identity 可以达到这种效果,使用 foo 函数的用户必须显式指定第一个参数的类型。

3.2.阻止推断指引

        C++ 17 引入了一个新的语言特性,就是 CTAD,借助于隐式或显式的推断指引,类模板的模板参数也支持自动推导。但是,隐式的类型推导有可能会产生错误的结果,比如这个 smart_pointer 类的设计:

template <class T>
class smart_pointer {
public:smart_pointer(T* object);//...
}

        借助于隐式推断指引,用户可以写出这样的代码,不需要显式指定模板参数 T:

Widget* widget{/* ... */};
smart_pointer ptr{widget};

        但是问题是,T* 代表的指针无法区别 object 是单个对象的指针还是数组,因为数组在函数调用的时候也会退化成指针,所以自动推导出来的类型有可能是错误的,比如这样的代码:

Widget widget[N];
smart_pointer ptr{widget};

        此时推导类型 T 仍然是 Widget,我们希望的是 Widget[]。

        借助于 type_identity,我们可以阻止这种隐式的推断指引,强制用户指定正确的模板参数类型。我们将 smart_pointer 的构造函数修改一下:

smart_pointer(std::type_identity_t<T>* object);

        这样上述代码就会产生错误,用户必须这样使用才能正确编译,这也是我们期望的正确结果:

Widget widget[N];
smart_pointer<Widget[]> ptr{widget};

3.3.类型保持

        type_identity_t<T> 本质上还是 T,所以可以被用在一些需要短暂记忆并保持类型的场合。资料 [5] 是 Timur Doumler 为推动 type_identity 进入标准而做的提案,它给出了几个利用 type_identity 的类型保持功能,使得 type_identity 可以作为其他元函数(Meta function)的实现基础,比如我们可以模仿标准库实现一个 remove_const 的元函数(type traits):

template <typename T>
struct remove_const : std::type_identity<T> {};template <typename T>
struct remove_const<T const> : std::type_identity<T> {};

大家可能会有疑问,为什么不直接写成这样:

template <typename T>
struct remove_const : T {};template <typename T>
struct remove_const<T const> : T {};

如果写成第二种形式,则这样的断言会失败:

static_assert(std::is_same_v<remove_const<int const>, int>);

        因为通过 remove_const<T const> 或 remove_const<T> 得到的类型都是 remove_const<T>,不是 T。使用 type_identity,我们就可以借助于它的 type 类型保持得到原始的 T,这样的断言就是成功的:

static_assert(std::is_same_v<remove_const2<int const>::type, int>);

        因为通过 remove_const2<T>::type 可以得到原始类型 T,而不是 remove_const2<T>,那不是我们要的结果。

3.4.满足一些稀奇古怪的语法

        type_identity 的其他用法还包括满足一些稀奇古怪的语法形式,比如语法上我们要创建一个临时数组,但是直接写 'T[]{}' 语法形式上就是错误的,因为编译器不能确定 '[]' 的左边是标识符还是类型。但是用 type_identity 中转一下,编译器就确定知道 '[]' 左边是个类型:

template<typename T>
void Print(T v[]) { ... }template<typename T>
void Process(T t) {Print(std::type_identity_t<T[]>{ 1,2,3 }); //编译器能正确理解//PrintInt(T[]{ 1,2,3 }); //语法错误,[] 左边不能确定是类型
}

4.示例

代码如下:

#include <iostream>
#include <type_traits>
#include <functional>template <typename T>
struct type_identity
{using type = T;
};template <typename T>
using type_identity_t = typename type_identity<T>::type;template <typename... args_t>
void func_wrapped(type_identity_t<std::function<void(args_t...)>> function_,args_t ...args)
{std::cout << "typeid(function_).name():                         "<< typeid(function_).name() << std::endl;std::cout << "typeid(std::function<void(args_t...)>).name():    "<< typeid(std::function < void(args_t...)>).name() << std::endl;std::cout << "std::is_same<>::value             "<< std::is_same< std::function<void(args_t...)>,type_identity_t<std::function<void(args_t...)>>>::value << std::endl << std::endl;// do something here
}void test()
{std::cout << __FUNCTION__ << std::endl;
}int main()
{std::cout << std::boolalpha;func_wrapped([](int a) { }, 1);func_wrapped(test);return 0;
}

输出:

typeid(function_).name():                         St8functionIFviEE
typeid(std::function<void(args_t...)>).name():    St8functionIFviEE
std::is_same<>::value             truetypeid(function_).name():                         St8functionIFvvEE
typeid(std::function<void(args_t...)>).name():    St8functionIFvvEE
std::is_same<>::value             true

5.总结

        希望大家能够有所收获,笔者水平有限。成文之处难免有理解谬误之处,欢迎大家多多讨论,指教。

推荐文章阅读

std::type_identity

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353418.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

element-ui将组件默认语言改为中文

在main.js中加入以下代码即可 // 引入 Element Plus 及其样式 import ElementPlus from element-plus import element-plus/dist/index.css// 引入中文语言包 import zhCn from element-plus/es/locale/lang/zh-cn// 使用 Element Plus 并设置语言为中文 app.use(ElementPlus,…

RNN的变种们:GRULSTM双向RNN

上篇笔记记录到RNN的一个缺点&#xff1a;训练时会出现梯度消失&#xff0c;解决的办法是找到一个更优的计算单元。这里也有GRU和LSTM。 GRU&#xff08;Gated Recurrent Unit&#xff09;门控训练网络 什么是门控机制&#xff1f;就是对当前的输入进行一个筛选。门打开&…

从零开始写 Docker(十八)---容器网络实现(下):为容器插上”网线“

本文为从零开始写 Docker 系列第十八篇&#xff0c;利用 linux 下的 Veth、Bridge、iptables 等等相关技术&#xff0c;构建容器网络模型&#xff0c;为容器插上”网线“。 完整代码见&#xff1a;https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实…

私域引流宝PHP源码 以及搭建教程

私域引流宝PHP源码 以及搭建教程

LeetCode 算法:合并两个有序链表 c++

原题链接&#x1f517;&#xff1a;合并两个有序链表 难度&#xff1a;简单⭐️ 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;…

【Go语言】面向对象编程(二):通过组合实现类的继承和方法重写

通过组合实现类的继承和方法重写 要实现面向对象的编程&#xff0c;就必须实现面向对象编程的三大特性&#xff1a;封装、继承和多态。 1 封装 类的定义及其内部数据的定义可以看作是类的属性&#xff0c;基于类定义的函数方法则是类的成员方法。 2 继承 Go 语言中&#x…

全网最全 Kimi 使用手册,看完 Kimi 效率提升 80%

在当前AI文字大模型领域&#xff0c;ChatGPT4.0无疑是最强大。然而&#xff0c;最近最火爆的大模型非国产Kimi莫属。 相较于其它大模型&#xff0c;Kimi 最大的优势在于&#xff0c;超长文本输入&#xff0c;支持200万汉字&#xff0c;是全球范围内罕见的超长文本处理工具&…

cesium按照参数绘制不同形状的船舶

俺们公司之前有个自创的所谓前端GIS框架&#xff0c;是用Cesium搞的。我对该框架不熟悉&#xff0c;用它在地图上作画&#xff0c;画船舶符号&#xff0c;看以前的代码&#xff0c;感觉十分艰深晦涩&#xff0c;什么材质、纹理&#xff0c;令人头大如斗。我4年前用过一阵Cesium…

[渗透测试学习] BoardLight-HackTheBox

BoardLight-HackTheBox 信息搜集 nmap扫描一下 nmap -sV -v 10.10.11.11扫描结果如下 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.11 (Ubuntu Linux; protocol 2.0) 80/tcp open http Apache httpd 2.4.41 ((Ubuntu))80端口有h…

Centos8.5安装mysql8.0

1.检查是否有安装mysql数据库&#xff08;如果有mysql或者mariadb数据库&#xff0c;则卸载&#xff09; [rootmyhost ~]# rpm -qa |grep mysql [rootmyhost ~]# rpm -qa | grep mariadb [rootmyhost ~]# ll /etc/my.cnf ls: 无法访问/etc/my.cnf: No such file or directory…

uniapp使用伪元素实现气泡

uniapp使用伪元素实现气泡 背景实现思路代码实现尾巴 背景 气泡效果在开发中使用是非常常见的&#xff0c;使用场景有提示框&#xff0c;对话框等等&#xff0c;今天我们使用css来实现气泡效果。老规矩&#xff0c;先看下效果图&#xff1a; 实现思路 其实实现这个气泡框的…

spark常见问题

写文章只是为了学习总结或者工作内容备忘&#xff0c;不保证及时性和准确性&#xff0c;看到的权当个参考哈&#xff01; 1. 执行Broadcast大表时&#xff0c;等待超时异常&#xff08;awaitResult&#xff09; 现象&#xff1a;org.apache.spark.SparkException: Exception…

006 spring事务支持

文章目录 事务回顾事务介绍事务并发问题(隔离性导致)事务隔离级别 Spring框架事务管理相关接口Spring框架事务管理的分类编程式事务管理(了解)声明式事务管理(重点) 事务管理之XML方式业务层持久层单元测试代码配置事务管理的AOP 事务管理之混合方式事务管理之基于AspectJ的纯注…

Matlab只选取自己需要的数据画图

在Matlab作图的时候&#xff0c;经常会在同一个坐标系中作很多数据的图&#xff0c;如下图所示&#xff1a; 这就会导致不同数据所作的线会重叠在一起&#xff0c;不利于数据分析。如果只想对比几个数据的趋势&#xff0c;直接修改代码太过麻烦&#xff0c;可通过Matlab的绘图…

springboot项目mapper无法自动装配,未找到 ‘userMapper‘ 类型的Bean解决办法.

一开始我看到了这个回答&#xff1a;springboot项目mapper无法自动装配&#xff0c;未找到 ‘userMapper‘ 类型的 Bean解决办法&#xff08;含报错原因&#xff09;_无法自动装配。找不到 usermapper 类型的 bean。-CSDN博客 mapper无法自动装配&#xff0c;未找到 ‘userMap…

python+unity手势控制地球大小

效果图如下 具体操作如下 1 在unity窗口添加一个球体 2 给球体添加材质,材质图片使用地球图片 地球图片如下 unity材质设置截图如下 3 编写地球控制脚本 using System.Collections; using System.Collections.Generic; using UnityEngine;public class test : MonoBehavio…

【AI绘画】新手小白看这篇就够啦!国产PS AI插件超好入门!

随着人工智能技术的飞速发展&#xff0c;Photoshop作为设计师们不可或缺的工具&#xff0c;也在不断地融入AI技术&#xff0c;以提升设计效率和效果。最近米兔用了一款AI绘画软件StartAI&#xff0c;被其强大的功能和易用性经验到了&#xff0c;下面跟大家详细分享一下这款ps插…

ViNT: A Foundation Model for Visual Navigation

介绍 现存的问题&#xff1a;预训练的方式在很多领域取得了成功&#xff0c;但是由于环境、平台和应用程序的绝对多样性&#xff0c;因此很难应用在机器人领域。 那么想要做移动机器人的基础模型需要什么&#xff1f; 本文定义了一个机器人领域的基础模型&#xff0c;可以实…

电脑数据恢复,掌握4个方法,恢复数据很简单!

在数字化浪潮席卷全球的今天&#xff0c;电脑数据已成为我们生活与工作中不可或缺的一部分。然而&#xff0c;当这些数据因各种原因意外丢失或损坏时&#xff0c;那种失落与无助的感觉常常令人倍感焦虑。 想象一下&#xff0c;你正在为一项重要项目加班加点&#xff0c;突然电…

【CVPR2021】LoFTR:基于Transformers的无探测器的局部特征匹配方法

LoFTR&#xff1a;基于Transformers的局部检测器 0. 摘要 我们提出了一种新的局部图像特征匹配方法。我们建议先在粗略级别建立像素级密集匹配&#xff0c;然后再在精细级别细化良好匹配&#xff0c;而不是按顺序进行图像特征检测、描述和匹配。与使用成本体积搜索对应关系的密…