RNN的变种们:GRULSTM双向RNN

上篇笔记记录到RNN的一个缺点:训练时会出现梯度消失,解决的办法是找到一个更优的计算单元。这里也有GRU和LSTM。

GRU(Gated Recurrent Unit)门控训练网络

什么是门控机制?就是对当前的输入进行一个筛选。门打开,信息进来,继续往下传,如果门关闭,信息就停留再此,不可以往下传。它决定了会有哪些信息往下传。

GRU有两个门,一个是更新门,一个是重置门,他的作用就是hi 或者hi-1和当前信息的比重问题,

从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。使用门控机制学习长期依赖关系的基本思想和 LSTM 一致,但还是有一些关键区别:

  • GRU 有两个门(重置门与更新门),而 LSTM 有三个门(输入门、遗忘门和输出门)。
  • GRU 并不会控制并保留内部记忆(c_t),且没有 LSTM 中的输出门。
  • LSTM 中的输入与遗忘门对应于 GRU 的更新门,重置门直接作用于前面的隐藏状态。
  • 在计算输出时并不应用二阶非线性。

GRU 是标准循环神经网络的改进版,但到底是什么令它如此高效与特殊?

为了解决标准 RNN 的梯度消失问题,GRU 使用了更新门(update gate)与重置门(reset gate)。基本上,这两个门控向量决定了哪些信息最终能作为门控循环单元的输出。这两个门控机制的特殊之处在于,它们能够保存长期序列中的信息,且不会随时间而清除或因为与预测不相关而移除。

更新门帮助模型决定到底要将多少过去的信息传递到未来,或到底前一时间步和当前时间步的信息有多少是需要继续传递的。

重置门主要决定了到底有多少过去的信息需要遗忘。

LSTM

长短期记忆网络(long short-term memory network)。LSTM 会以一种非常精确的方式来传递记忆——使用了一种特定的学习机制:哪些部分的信息需要被记住,哪些部分的信息需要被更新,哪些部分的信息需要被注意。与之相反,循环神经网络会以一种不可控制的方式在每一个时间步骤都重写记忆。这有助于在更长的时间内追踪信息。

双向RNN

不仅需要前面的信息,还需要后面的信息,

总结

参考

1.经典必读:门控循环单元(GRU)的基本概念与原理 | 机器之心

2.LSTM入门必读:从入门基础到工作方式详解 | 机器之心

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353416.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始写 Docker(十八)---容器网络实现(下):为容器插上”网线“

本文为从零开始写 Docker 系列第十八篇,利用 linux 下的 Veth、Bridge、iptables 等等相关技术,构建容器网络模型,为容器插上”网线“。 完整代码见:https://github.com/lixd/mydocker 欢迎 Star 推荐阅读以下文章对 docker 基本实…

私域引流宝PHP源码 以及搭建教程

私域引流宝PHP源码 以及搭建教程

LeetCode 算法:合并两个有序链表 c++

原题链接🔗:合并两个有序链表 难度:简单⭐️ 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:…

【Go语言】面向对象编程(二):通过组合实现类的继承和方法重写

通过组合实现类的继承和方法重写 要实现面向对象的编程,就必须实现面向对象编程的三大特性:封装、继承和多态。 1 封装 类的定义及其内部数据的定义可以看作是类的属性,基于类定义的函数方法则是类的成员方法。 2 继承 Go 语言中&#x…

全网最全 Kimi 使用手册,看完 Kimi 效率提升 80%

在当前AI文字大模型领域,ChatGPT4.0无疑是最强大。然而,最近最火爆的大模型非国产Kimi莫属。 相较于其它大模型,Kimi 最大的优势在于,超长文本输入,支持200万汉字,是全球范围内罕见的超长文本处理工具&…

cesium按照参数绘制不同形状的船舶

俺们公司之前有个自创的所谓前端GIS框架,是用Cesium搞的。我对该框架不熟悉,用它在地图上作画,画船舶符号,看以前的代码,感觉十分艰深晦涩,什么材质、纹理,令人头大如斗。我4年前用过一阵Cesium…

[渗透测试学习] BoardLight-HackTheBox

BoardLight-HackTheBox 信息搜集 nmap扫描一下 nmap -sV -v 10.10.11.11扫描结果如下 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.11 (Ubuntu Linux; protocol 2.0) 80/tcp open http Apache httpd 2.4.41 ((Ubuntu))80端口有h…

Centos8.5安装mysql8.0

1.检查是否有安装mysql数据库(如果有mysql或者mariadb数据库,则卸载) [rootmyhost ~]# rpm -qa |grep mysql [rootmyhost ~]# rpm -qa | grep mariadb [rootmyhost ~]# ll /etc/my.cnf ls: 无法访问/etc/my.cnf: No such file or directory…

uniapp使用伪元素实现气泡

uniapp使用伪元素实现气泡 背景实现思路代码实现尾巴 背景 气泡效果在开发中使用是非常常见的,使用场景有提示框,对话框等等,今天我们使用css来实现气泡效果。老规矩,先看下效果图: 实现思路 其实实现这个气泡框的…

spark常见问题

写文章只是为了学习总结或者工作内容备忘,不保证及时性和准确性,看到的权当个参考哈! 1. 执行Broadcast大表时,等待超时异常(awaitResult) 现象:org.apache.spark.SparkException: Exception…

006 spring事务支持

文章目录 事务回顾事务介绍事务并发问题(隔离性导致)事务隔离级别 Spring框架事务管理相关接口Spring框架事务管理的分类编程式事务管理(了解)声明式事务管理(重点) 事务管理之XML方式业务层持久层单元测试代码配置事务管理的AOP 事务管理之混合方式事务管理之基于AspectJ的纯注…

Matlab只选取自己需要的数据画图

在Matlab作图的时候,经常会在同一个坐标系中作很多数据的图,如下图所示: 这就会导致不同数据所作的线会重叠在一起,不利于数据分析。如果只想对比几个数据的趋势,直接修改代码太过麻烦,可通过Matlab的绘图…

springboot项目mapper无法自动装配,未找到 ‘userMapper‘ 类型的Bean解决办法.

一开始我看到了这个回答:springboot项目mapper无法自动装配,未找到 ‘userMapper‘ 类型的 Bean解决办法(含报错原因)_无法自动装配。找不到 usermapper 类型的 bean。-CSDN博客 mapper无法自动装配,未找到 ‘userMap…

python+unity手势控制地球大小

效果图如下 具体操作如下 1 在unity窗口添加一个球体 2 给球体添加材质,材质图片使用地球图片 地球图片如下 unity材质设置截图如下 3 编写地球控制脚本 using System.Collections; using System.Collections.Generic; using UnityEngine;public class test : MonoBehavio…

【AI绘画】新手小白看这篇就够啦!国产PS AI插件超好入门!

随着人工智能技术的飞速发展,Photoshop作为设计师们不可或缺的工具,也在不断地融入AI技术,以提升设计效率和效果。最近米兔用了一款AI绘画软件StartAI,被其强大的功能和易用性经验到了,下面跟大家详细分享一下这款ps插…

ViNT: A Foundation Model for Visual Navigation

介绍 现存的问题:预训练的方式在很多领域取得了成功,但是由于环境、平台和应用程序的绝对多样性,因此很难应用在机器人领域。 那么想要做移动机器人的基础模型需要什么? 本文定义了一个机器人领域的基础模型,可以实…

电脑数据恢复,掌握4个方法,恢复数据很简单!

在数字化浪潮席卷全球的今天,电脑数据已成为我们生活与工作中不可或缺的一部分。然而,当这些数据因各种原因意外丢失或损坏时,那种失落与无助的感觉常常令人倍感焦虑。 想象一下,你正在为一项重要项目加班加点,突然电…

【CVPR2021】LoFTR:基于Transformers的无探测器的局部特征匹配方法

LoFTR:基于Transformers的局部检测器 0. 摘要 我们提出了一种新的局部图像特征匹配方法。我们建议先在粗略级别建立像素级密集匹配,然后再在精细级别细化良好匹配,而不是按顺序进行图像特征检测、描述和匹配。与使用成本体积搜索对应关系的密…

力扣hot100: 48. 旋转图像

LeetCode:48. 旋转图像 受到力扣hot100:54. 螺旋矩阵的启发,我们可以对旋转图像按层旋转,我们只需要记录四个顶点,并且本题是一个方阵,四个顶点就能完成图像的旋转操作。 1、逐层旋转 注意到&#xff0…

打造完美Mac多屏视界,BetterDisplay Pro一键掌控!

BetterDisplay Pro for Mac是一款专为Mac用户打造的显示器管理与优化软件,旨在为用户带来卓越的视觉体验和工作效率。它凭借强大的功能和简洁易用的界面,成为了Mac用户优化显示器设置的得力助手。 一、全方位管理与优化 BetterDisplay Pro for Mac支持…