实战|YOLOv10 自定义目标检测

引言

YOLOv10[1] 概述和使用自定义数据训练模型

alt

概述

由清华大学的研究团队基于 Ultralytics Python 包研发的 YOLOv10,通过优化模型结构并去除非极大值抑制(NMS)环节,提出了一种创新的实时目标检测技术。这些改进不仅实现了行业领先的检测性能,还降低了对计算资源的需求。大量实验结果证明,YOLOv10 在不同规模的模型上都能提供卓越的准确率和延迟之间的平衡。

架构

alt
  • Backbone:在 YOLOv10 中,主干网络负责提取特征,它采用了改进版的 CSPNet(跨阶段部分网络),这一改进有助于优化梯度传播,并降低计算过程中的重复性。
  • Neck:连接层的作用是整合不同尺度上的特征,并将它们传递给网络的输出部分。它内部集成了 PAN(路径聚合网络)层,以实现多尺度特征的有效融合。
  • One-to-Many Head:在训练过程中,对于每个目标对象生成多个预测结果,这样做可以提供更多的监督信号,从而提升模型的学习精度。
  • One-to-One Head:在推理过程中,对于每个目标对象生成单一的最佳预测结果,这样做可以省去 NMS(非极大值抑制)的步骤,减少处理时间,提高整体的效率。

模型变体和性能

YOLOv10 提供了六种不同规模的模型:

  1. YOLOv10-N:纳米版,专为资源极其有限的场合设计。

  2. YOLOv10-S:小型版,兼顾速度与准确性。

  3. YOLOv10-M:中型版,适用于一般用途。

  4. YOLOv10-B:平衡版,通过增加模型宽度来提升准确性。

  5. YOLOv10-L:大型版,牺牲一定的计算资源以换取更高的准确性。

  6. YOLOv10-X:超大型版,追求极致的准确性和性能表现。

alt

性能比较

让我们看一下不同模型在延迟和准确性方面的比较,这些模型是在 COCO 等标准基准上进行测试的。

alt
img
img

显然,YOLOv10 是实时物体检测应用的尖端技术,能够以更少的参数提供更高的精度和速度性能。

实战训练

首先,克隆官方 YOLOv10 GitHub 存储库以下载必要的 yolov10n 模型。

pip install -q git+https://github.com/THU-MIG/yolov10.git

wget -P -q https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10n.pt

您可以在 Roboflow Universe 平台上开展任何自定义项目,自行构建数据集,还可以利用 Intel 赞助的 RF100 数据集。在本文中,我将采用一个专为检测 X 射线图像中的可疑物品而设计好的数据集。

通过 Roboflow API,您可以下载以 YOLOv8 格式封装的模型。

!pip install -q roboflow
from roboflow import Roboflow
rf = Roboflow(api_key="your-api-key")
project = rf.workspace("vladutc").project("x-ray-baggage")
version = project.version(3)
dataset = version.download("yolov8")

指定参数和文件路径,然后开始模型训练。

!yolo task=detect mode=train epochs=25 batch=32 plots=True \
model='/content/-q/yolov10n.pt' \
data='/content/X-Ray-Baggage-3/data.yaml'

示例 data.yaml 文件

names:
- Gun
- Knife
- Pliers
- Scissors
- Wrench

nc: 5

roboflow:
  license: CC BY 4.0
  project: x-ray-baggage
  url: https://universe.roboflow.com/vladutc/x-ray-baggage/dataset/3
  version: 3
  workspace: vladutc

test: /content/X-Ray-Baggage-3/test/images
train: /content/X-Ray-Baggage-3/train/images
val: /content/X-Ray-Baggage-3/valid/images

让我们看看结果。

Image(filename='/content/runs/detect/train/results.png', width=1000)
alt

让我们预测测试数据并在 5x2 网格中显示结果。

from ultralytics import YOLOv10

model_path = '/content/runs/detect/train/weights/best.pt'
model = YOLOv10(model_path)
results = model(source='/content/X-Ray-Baggage-3/test/images', conf=0.25,save=True)

import glob
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

images = glob.glob('/content/runs/detect/predict/*.jpg')

images_to_display = images[:10]

fig, axes = plt.subplots(25, figsize=(2010))

for i, ax in enumerate(axes.flat):
    if i < len(images_to_display):
        img = mpimg.imread(images_to_display[i])
        ax.imshow(img)
        ax.axis('off')  
    else:
        ax.axis('off')  

plt.tight_layout()
plt.show()
alt
Reference
[1]

Source: https://medium.com/@batuhansenerr/yolov10-custom-object-detection-bd7298ddbfd3

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356836.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyTorch -- RNN 快速实践

RNN Layer torch.nn.RNN(input_size,hidden_size,num_layers,batch_first) input_size: 输入的编码维度hidden_size: 隐含层的维数num_layers: 隐含层的层数batch_first: True 指定输入的参数顺序为&#xff1a; x&#xff1a;[batch, seq_len, input_size]h0&#xff1a;[batc…

MySQL 创建数据表

创建MySQL数据表需要以下信息&#xff1a; 表名表字段名定义每个表字段 语法 以下为创建MySQL数据表的SQL通用语法&#xff1a; CREATE TABLE table_name (column_name column_type); 以下例子中我们将在 W3CSCHOOL 数据库中创建数据表w3cschool_tbl&#xff1a; CREAT…

three.js 第八节 - gltf加载器、解码器

// ts-nocheck // 引入three.js import * as THREE from three // 导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls // 导入hdr加载器&#xff08;专门加载hdr的&#xff09; import { RGBELoader } from three/examples/jsm/loaders…

Unity3d自定义TCP消息替代UNet实现网络连接

以前使用UNet实现网络连接,Unity2018以后被弃用了。要将以前的老程序升到高版本,最开始打算使用Mirro,结果发现并不好用。那就只能自己写连接了。 1.TCP消息结构 (1). TCP消息是按流传输的,会发生粘包。那么在发射和接收消息时就需要对消息进行打包和解包。如果接收的消息…

建造者模式(大话设计模式)C/C++版本

建造者模式 C 参考&#xff1a;https://www.cnblogs.com/Galesaur-wcy/p/15907863.html #include <iostream> #include <vector> #include <algorithm> #include <string> using namespace std;// Product Class&#xff0c;产品类&#xff0c;由多个…

荒野大镖客2启动找不到emp.dll的7个修复方法,轻松解决dll丢失的办法

一、emp.dll文件丢失的常见原因 安装或更新问题&#xff1a;在软件或游戏的安装过程中&#xff0c;可能由于安装程序未能正确复制文件到目标目录&#xff0c;或在更新过程中文件被意外覆盖或删除&#xff0c;导致emp.dll文件丢失。 安全软件误删&#xff1a;某些安全软件可能…

【ajax基础01】ajax简介

目录 一&#xff1a;ajax简介 1 什么是ajax 二&#xff1a;ajax使用 1 如何使用ajax 2 axios使用&#xff08;重点&#xff09; 三&#xff1a;案例 四&#xff1a;如何赚钱 一&#xff1a;ajax简介 1 什么是ajax AJAX&#xff08;Asynchronous JavaScript And XML &am…

莱辅络Rebro BIM机电专业软件

莱辅洛&#xff08;Rebro&#xff09;是一款专业机电 BIM 软件。它具备专业人士所期待的各种专业功能&#xff0c;应用于建筑机电工程的三维设计&#xff0c;并且适用于建筑、结构、给排水、暖通、电气五大专业。 该软件具有以下特点&#xff1a; • 3D 模型&#xff1a;可以…

渗透测试-若依框架的杀猪交易所系统管理后台

前言 这次是带着摸鱼的情况下简单的写一篇文章&#xff0c;由于我喜欢探究黑灰产业&#xff0c;所以偶尔机遇下找到了一个加密H币的交易所S猪盘&#xff0c;我记得印象是上年的时候就打过这一个同样的站&#xff0c;然后我是通过指纹查找其它的一些站&#xff0c;那个站已经关…

计网重点面试题-TCP三次握手四次挥手

三次握手 第一次握手(syn1) 客户端会随机初始化序号&#xff08;client_isn&#xff09;&#xff0c;将此序号置于 TCP 首部的「序列号」字段中&#xff0c;同时把 SYN 标志位置为 1&#xff0c;表示 SYN 报文。接着把第一个 SYN 报文发送给服务端&#xff0c;表示向服务端发…

一个电商创业者眼中的618:平台大变局

战役结束了&#xff0c;战斗还在继续。 一位朋友去年5月创业&#xff0c;网上卖咖啡&#xff0c;这个赛道很拥挤&#xff0c;时机也不好&#xff0c;今年是他参加第一个618。朋友说&#xff0c;今年的目标是锤炼团队&#xff0c;总结方法&#xff0c;以及最重要的——活下去。…

基于CentOS Stream 9平台 安装/卸载 Redis7.0.15

已更正systemctl管理Redis服务问题 1. 官方下载地址 https://redis.io/downloads/#redis-downloads 1.1 下载或上传到/opt/coisini目录下&#xff1a; mkdir /opt/coisini cd /opt/coisini wget https://download.redis.io/releases/redis-7.0.15.tar.gz2. 解压 tar -zxvf re…

基于IDEA的Maven简单工程创建及结构分析

目录 一、用 mvn 命令创建项目 二、用 IDEA 的方式来创建 Maven 项目。 &#xff08;1&#xff09;首先在 IDEA 下的 Maven 配置要已经确保完成。 &#xff08;2&#xff09;第二步去 new 一个 project &#xff08;创建一个新工程&#xff09; &#xff08;3&#xff09;…

1027. 方格取数

Powered by:NEFU AB-IN Link 文章目录 1027. 方格取数题意思路代码 1027. 方格取数 题意 某人从图中的左上角 A 出发&#xff0c;可以向下行走&#xff0c;也可以向右行走&#xff0c;直到到达右下角的 B 点。 在走过的路上&#xff0c;他可以取走方格中的数&#xff08;取…

Docker网络介绍

网络是虚拟化技术中最复杂的部分&#xff0c;也是Docker应用中的一个重要环节。 Docker中的网络主要解决容器与容器、容器与外部网络、外部网络与容器之间的互相通信的问题。 这些复杂情况的存在要求Docker有一个强大的网络功能去保障其网络的稳健性。因此&#xff0c;Docker…

SCI一区TOP|双曲正弦余弦优化算法(SCHO)原理及实现【免费获取Matlab代码】

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2023年&#xff0c;J Bai受到双曲正弦余弦函数启发&#xff0c;提出了双曲正弦余弦优化算法&#xff08;Sinh Cosh optimizer, SCHO&#xff09;。 2.算法原理 2.1算法思想 SCHO灵感来源…

分布式锁(Redission)

分布式锁&#xff1a; 使用场景&#xff1a; 通常对于一些使用率高的服务&#xff0c;我们会进行多次部署&#xff0c;可能会部署在不同的服务器上&#xff0c;但是他们获取和操作的数据仍然是同一份。为了保证服务的强一致性&#xff0c;我们需要对线程进行加锁&#xff0c;…

ROS中的TF是什么

在ROS (Robot Operating System) 中&#xff0c;tf::TransformBroadcaster 是一个用于发布坐标变换信息的重要类&#xff0c;尤其在处理机器人定位和导航数据时非常常见。tf::TransformBroadcaster 对象允许你广播从一个坐标系到另一个坐标系的变换关系&#xff0c;这对于多传感…

Vue38 安装脚手架 vue-cli ,并使用脚手架创建项目

安装脚手架 vue-cli &#xff0c;并使用脚手架创建项目 第一步 安装脚手架 npm config set registry https:\\[registry.npmmirror.com // 切换淘宝镜像 npm install -g vue/cli第二步 切换到创建项目的目录&#xff0c;创建项目 cd XXX vue create XXX第三步 启动项目 npm…

【Linux】基础IO_3

文章目录 六、基础I/O3. 软硬链接4. 动静态库 未完待续 六、基础I/O 3. 软硬链接 使用 ln 就可以创建链接&#xff0c;使用 ln -s 可以创建软链接&#xff0c;直接使用 ln 则是硬链接。 我们对硬链接进行测试一下&#xff1a; 根据测试&#xff0c;我们知道了 硬链接就像一…