【教程】几种不同的RBF神经网络

本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com

目录

  • 一、经典RBF神经网络
    • 1.1.经典径向基神经网络是什么
    • 1.2.经典径向基神经网络-代码与示例
  • 二、广义回归神经网络GRNN
    • 2.1.广义回归神经网络是什么
    • 2.2.广义回归神经网络是什么-代码与示例
  • 三、概率神经网络PNN
    • 3.1.概率神经网络是什么
    • 3.2.概率神经网络是什么-代码与示例

RBF神经网络指的是用RBF曲线来构成的神经网络模型,
RBF曲线
常见的RBF神经网络包括径向基神经网络、概率神经网络、广义回归神经网络等等。
下面我们介绍这几种常见的RBF神经网络。

一、经典RBF神经网络

1.1.经典径向基神经网络是什么

经典径向基神经网络的思想很纯粹,如下
经典径向基神经网络
可以看到,经典径向基神经网络在各个数据点都生成一个径向基。每个径向基的宽度是预设的,然后再求解每个径向基的高度,使得最后所有径向基叠加后能拟合目标曲线。可知,经典径向基神经网络是纯粹的曲线拟合,就是仅从数学角度去使用径向基函数来拟合目标曲线。

1.2.经典径向基神经网络-代码与示例

在matlab中使用newrbe来实现一个径向基神经网络,具体示例如下:

%------代码说明:用newrbe构建一个径向基神经网络 -----------------
% 来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2018a   
%-------------------------------------------------------------------%
%----数据准备----                              
x  = [-2,-1,0,1,2;-6,-2,0,3,8];                % 输入数据
y  = [3,2,3,1,2];                              % 输出数据
%----网络训练----                              
net = newrbe(x, y, 0.5);                       % 以X,Y建立径向基网络,目标误差为0.01,径向基的宽度参数spread=0.5
py = sim(net,x)                                % 用建好的网络进行预测,这里的x是要用来进行预测的输入% ----打印结果----------
err_rate = mean(abs(py-y)./abs(y))             % 计算相对误差占比
plot(1:length(y),y,'*',1:length(y),py,'o')     % 绘制结果,x轴代表样本
legend('原始数据的y','网络预测的y')            % 添加图例

运行结果如下:
在这里插入图片描述
可以看到,网络的预测值与真实值完全一致,
这并非偶然,因为本例用于预测的数据就是训练数据,而newrbe在训练数据上是0误差的

二、广义回归神经网络GRNN

2.1.广义回归神经网络是什么

广义回归神经网络General Regression Neural Network也是径向基神经网络的一种,广义回归使用所有历史样本点来综合评估当前样本点。类似于投票的思想,即所有历史样本点都给出当前样本点与自己相似的概率,然后得到最终的综合评估,如下:
y = ∑ i y i ∗ p i y =\sum\limits_{i}y_i*p_i y=iyipi
其中,Pi的计算为:
p ^ i = exp ⁡ ( − a 2 ( x − x i ) 2 ) p i = p j / ∑ j P j \hat{p}_i = \exp(-a^2(x-x_i)^2) \\p_i =p_j/ \sum\limits_{j}P_j p^i=exp(a2(xxi)2)pi=pj/jPj

pi的意义如下图所示:
在这里插入图片描述

它假设x与任何一个已有样本中 xi 相同的概率都服从正态分布,然后再进行归一化就得到pi的计算公式。
相比经典RBF,广义回归更具解释性。

2.2.广义回归神经网络是什么-代码与示例

在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:

%代码说明:径向基newgrnn的matlab工具箱使用Demo
%来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2014b
%-----------------------------------------------------
%----数据准备----
x1  = 1:0.2:10;
x2  = -5:0.2:4;
X   = [x1;x2];                % 输入数据,注意中间是分号
Y   = sin (X(1,:))+X(2,:);    % 输出数据%----网络训练----
net = newgrnn(X,Y);           % 网络建立与训练
simY = sim(net, X);           % 用建好的网络拟合原始数据%----结果对比----
figure(1);
t = 1:size(Y,2);
plot(t,Y,'*',t,simY,'r')  

三、概率神经网络PNN

3.1.概率神经网络是什么

概率神经网络ProbabilisticNeuralNetwork是广义回归神经网络的拓展,广义回归神经网络用于数值预测,而概率神经网络则用于类别预测。
概率神经网络

概率神经网络用于类别预测,有多少个类别就有多少个输出,概率神经网络仅仅是将广义回归神经网络再加上一个compet运算,即哪个输出最大就置1,其余置0。

3.2.概率神经网络是什么-代码与示例

在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:

% 训练数据
P = [1 2 3 4 5 6 7];   % 输入数据
Tc = [1 2 3 2 2 3 1];  % 输出数据:类别编号
T = ind2vec(Tc);       % 将类标转换为onehot编码格式%设计一个PNN神经网络,并测试
net = newpnn(P,T);     % 生成一个概率神经网络
Y = sim(net,P)         % 用网络进行预测
Yc = vec2ind(Y)        % 将预测结果转为类别编号 

运行结果如下:
在这里插入图片描述
以上就是三种常见的RBF神经网络的介绍了


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/363372.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用容器部署redis_设置配置文件映射到本地_设置存储数据映射到本地_并开发java应用_连接redis---分布式云原生部署架构搭建011

可以看到java应用的部署过程,首先我们要准备一个java应用,并且我们,用docker,安装一个redis 首先我们去start.spring.io 去生成一个简单的web项目,然后用idea打开 选择以后下载 放在这里,然后我们去安装redis 在公共仓库中找到redis . 可以看到它里面介绍说把数据放到了/dat…

重要通知:据最新TEMU要求所有欧区车灯都需要能效标签(eu energy lable)

重要通知: 据最新TEMU要求,所有“欧区车灯”都需要能效标签(eu energy lable),目前已下架欧区站点,上传成功后可恢复。 灯具类欧盟EU ENERGY LABEL 近日有不少欧洲站卖家收到TEMU平台商品要求卖家们发布的…

uniapp获取证书秘钥、Android App备案获取公钥、签名MD5值

一、 uniapp获取证书秘钥 打开uniapp开发者中心下载证书打开cmd输入以下这段代码,下载提供查看到的密钥证书密码就可以了!下载证书在 java 环境下运行才可以 // your_alias 换成 证书详情中的别名,your_keystore.keystore 改成自己的证书文件…

1panel 搭建多个网站

1panel 部署多个网站,另外的域名,或无域端口搭建方法。 当我们已经部署好一个网站后,想再部署一个网站在我们的服务器上时, 步骤:(另外的域名,部署在同一个服务器方法) 运行环境里…

百度ueditor如何修改图片的保存位置

背景 编辑器的保存图片是设置有默认规则的,但是服务器上一般会把图片路径设置为软连接,所以我就需要更改编辑器保存图片的路径,要不然,每次有新的部署,上一次上传的图片就会失效。先来看看编辑器默认的保存路径吧&…

【算法刷题 | 动态规划14】6.28(最大子数组和、判断子序列、不同的子序列)

文章目录 35.最大子数组和35.1题目35.2解法:动规35.2.1动规思路35.2.2代码实现 36.判断子序列36.1题目36.2解法:动规36.2.1动规思路36.2.2代码实现 37.不同的子序列37.1题目37.2解法:动规37.2.1动规思路37.2.2代码实现 35.最大子数组和 35.1…

①常用API----Math

public static int abs(int a) // 返回参数的绝对值 public static double ceil(double a) // 返回大于或等于参数的最小整数 public static double floor(double a) // 返回小于或等于参数的最大整数 public static int round(f…

css实现鼠标悬停在div上出现抬起元素的效果

如图所示,左侧为正常样式,右侧为添加效果后的样式 只需要给div添加以下class样式,主要实现效果在&:hover里面 .component-item {display: flex;align-items: center;width: 50px;height: 50px;border: 1px solid #f0f0f0;border-radius…

Linux高级编程——线程

pthread 线程 概念 :线程是轻量级进程,一般是一个进程中的多个任务。 进程是系统中最小的资源分配单位. 线程是系统中最小的执行单位。 优点: 比多进程节省资源,可以共享变量 进程会占用&am…

市场拓展招聘:完整指南

扩大招聘业务会给你带来很多挑战,更不用说你已经在处理的问题了。助教专业人士每周花近13个小时为一个角色寻找候选人。此外,客户的需求也在不断变化,招聘机构之间的竞争也在加剧。毫无疑问,对增长有战略的方法会有很大的帮助。一…

RocketMQ快速入门:事务消息原理及实现(十)

目录 0. 引言1. 原理2. 事务消息的实现2.1 java client实现(适用于spring框架)2.2 springboot实现 3. 总结 0. 引言 rocketmq 的一大特性就是支持事务性消息,这在诸多场景中有所应用。在之前的文章中我们已经讲解过事务消息的使用&#xff0…

无需向量量化的自回归图像生成

摘要 https://arxiv.org/pdf/2406.11838 传统观点认为,用于图像生成的自回归模型通常伴随着向量量化的标记。我们观察到,尽管离散值空间可以方便地表示分类分布,但它对于自回归建模来说并不是必需的。在这项工作中,我们提出使用扩…

【2024大语言模型必知】做RAG时为什么要使用滑动窗口?句子窗口检索(Sentence Window Retrieval)是什么?

目录 1. 传统的向量检索方法,使用整个文档检索,为什么不行? 2.句子滑动窗口检索(Sentence Window Retrieval)工作原理 3.句子滑动窗口检索(Sentence Window Retrieval)的优点 1. 传统的向量检…

Java的IO体系

目录 1、Java的IO体系2、IO的常用方法3、Java中为什么要分为字节流和字符流4、File和RandomAccessFile5、Java对象的序列化和反序列化6、缓冲流7、Java 的IO流中涉及哪些设计模式 1、Java的IO体系 IO 即为 input 输入 和 output输出 Java的IO体系主要分为字节流和字符流两大类…

nginx添加模块

问题描述:已经在运行的宝塔中的nginx如何添加模块 1. 进入宝塔nginx的脚本目录 cd /www/server/panel/install 2. 读修改宝塔官方写的脚本 vim nginx.sh 3. 找到字符 ./configure - 添加模块 --add-module/home/root/app/nginx-module/echo-nginx-module-0.62 …

AI专区上新啦!豆包、通义、360AI、天工AI、澜舟智库等入驻麒麟软件商店

继百度文心一言、讯飞星火、博思白板、雅意等AI产品上架后,麒麟软件商店再添新成员!近日,豆包、通义、360AI搜索、360智脑、360智绘、昆仑万维天工AI、澜舟智库等重磅AI产品登陆麒麟软件商店人工智能专区,涵盖了AI对话、AI写作、A…

零知识证明基础:数字签名

1、绪论 数字签名(Digital Signature),也称电子签名,是指附加在某一电子文档中的一组特定的符号或代码。它利用密码技术对该电子文档进行关信息提取并进行认证形成,用于标识签发者的身份以及签发者对电子文档的认可,并能被接收者…

【shell脚本速成】python安装脚本

文章目录 案例需求应用场景解决问题脚本思路案例代码 🌈你好呀!我是 山顶风景独好 🎈欢迎踏入我的博客世界,能与您在此邂逅,真是缘分使然!😊 🌸愿您在此停留的每一刻,都沐…

双路视频同屏显示(拼接)-基于野火Zynq7020开发板

前情提要 米联客FDMA驱动OV5640摄像头—基于野火Zynq7020开发板 本文在此基础上,实现了双路视频拼接。将ov5640输出的1024600的图像数据缩放为512600,分两路写入ddr3,并且显示在1024*600的RGB屏幕中。 纯FPGA也可以按此方法实现。 总体BLOC…

毕业答辩制作PPT【攻略】

毕业答辩制作PPT【攻略】 前言版权毕业答辩制作PPT【攻略】一、WPS AI 15天免费会员二、AI文档生成PPT三、修改完善PPT 最后 前言 2024-06-14 23:43:05 以下内容源自《【攻略】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此话 本文首次发布于CSDN平台 作者是CSDN…