【Matlab】-- 飞蛾扑火优化算法

在这里插入图片描述
文章目录

文章目录

  • 01 飞蛾扑火算法介绍
  • 02 飞蛾扑火算法伪代码
  • 03 基于Matlab的部分飞蛾扑火MFO算法
  • 04 参考文献

01 飞蛾扑火算法介绍

飞蛾扑火算法(Moth-Flame Optimization,MFO)是一种基于自然界飞蛾行为的群体智能优化算法。该算法由 Seyedali Mirjalili 于 2015 年提出,灵感来自于飞蛾在夜间导航时会被光源吸引的行为。飞蛾扑火算法通过模拟飞蛾绕着火焰(光源)螺旋飞行的轨迹,寻找最优解。

02 飞蛾扑火算法伪代码

初始化飞蛾群体的位置
计算飞蛾群体的适应度值
初始化火焰的位置和适应度值while (未达到最大迭代次数)根据当前火焰更新飞蛾的位置计算飞蛾的新适应度值更新火焰的位置和适应度值记录当前迭代的最优适应度值迭代计数器加1
end while

03 基于Matlab的部分飞蛾扑火MFO算法

%% 定义算法参数
N=50;%种群规模
Max_iteration=50;%最大迭代代数
lb=-0.5;%下限
ub=0.5;%上限%初始化飞蛾的位置
Moth_pos=initialization(N,dim,ub,lb);Convergence_curve=zeros(1,Max_iteration);Iteration=1;
tic;while Iteration<Max_iteration+1% 公式Flame_no=round(N-Iteration*((N-1)/Max_iteration));for i=1:size(Moth_pos,1)%检查飞蛾是否不在搜索空间Flag4ub=Moth_pos(i,:)>ub;Flag4lb=Moth_pos(i,:)<lb;Moth_pos(i,:)=(Moth_pos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;  % 计算适应度函数X=Moth_pos(i,:);Moth_fitness(1,i)=Objfun1(X,P_train,T_train,hiddennum,P_test,T_test); % Moth_fitness(1,i)=fobj(Moth_pos(i,:));  endif Iteration==1% 对第一批飞蛾进行分类[fitness_sorted I]=sort(Moth_fitness);sorted_population=Moth_pos(I,:);% 更新best_flames=sorted_population;best_flame_fitness=fitness_sorted;else% 排序double_population=[previous_population;best_flames];double_fitness=[previous_fitness best_flame_fitness];[double_fitness_sorted I]=sort(double_fitness);double_sorted_population=double_population(I,:);fitness_sorted=double_fitness_sorted(1:N);sorted_population=double_sorted_population(1:N,:);% 更新best_flames=sorted_population;best_flame_fitness=fitness_sorted;end% 更新目前获得的最佳火焰位置Best_flame_score=fitness_sorted(1);Best_flame_pos=sorted_population(1,:);previous_population=Moth_pos;previous_fitness=Moth_fitness;% a从-1到-2线性递减a=-1+Iteration*((-1)/Max_iteration);未完...end

代码解释:

  1. 初始化

    • 初始化飞蛾的位置和适应度。
    • 初始化收敛曲线和迭代计数器。
  2. 主循环

    • 每次迭代更新火焰的数量。
    • 检查并修正飞蛾的位置,确保在搜索空间内。
    • 计算每个飞蛾的适应度值。
    • 对飞蛾进行排序,更新火焰。
    • 更新最佳火焰的位置和适应度值。
    • 更新a值,使其线性递减。
    • 根据螺旋飞行路径更新飞蛾的位置。
    • 存储当前迭代的最佳适应度值,并绘制收敛曲线。
  3. 收敛判断

    • 迭代达到最大次数后,输出最优解。

通过这些步骤,飞蛾扑火算法能够有效地搜索全局最优解,并且在多种优化问题中表现良好。

04 参考文献

Seyedali Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems,
Volume 89, 2015.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/363682.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络治理新模式:Web3时代的社会价值重构

随着Web3技术的崛起&#xff0c;传统的网络治理模式正在经历革新&#xff0c;这不仅仅是技术的进步&#xff0c;更是对社会价值观念的挑战和重构。本文将深入探讨Web3时代的网络治理新模式&#xff0c;其背后的技术基础、社会影响以及未来的发展方向。 1. 引言 Web3时代&#…

17859划分准则小结

17859《划分准则》 发布时间&#xff1a;1999.9.13 实施时间&#xff1a;2001.1.1 计算机信息系统安全保护能力的五个等级&#xff1a; 第一级&#xff1a;用户自主保护级 第二级…

mac Canon打印机连接教程

官网下载安装驱动&#xff1a; 选择打印机类型和mac系统型号下载即可 Mac PS 打印机驱动程序 双击安装 系统偏好设置 点击“”添加&#xff1a; OK可打印玩耍&#xff01;&#xff01; 备注&#xff1a; 若需扫描&#xff0c;下载扫描程序&#xff1a; 备注&#xff1a;…

一站式企业服务平台能够帮助企业解决哪些问题?

近年来一站式企业服务平台备受区域政府及园区管理者的青睐&#xff0c;充当着区域政府或园区的千里眼和顺风耳&#xff0c;可以用来捕捉与区域经济发展相关的信息&#xff0c;也可以用来倾听企业的诉求&#xff0c;更是成为了区域深抓企业服务的多面手。 同时&#xff0c;一站式…

Zookeeper基础教程

Zookeeper基础教程 资料来源&#xff1a;Zookeeper Tutorial (tutorialspoint.com) zookeeper就是Hadoop生态动物园的管理员 1. Zookeeper-概述 ZooKeeper是一种分布式协调服务&#xff0c;用于管理大型主机集群(large set of hosts)。在分布式环境中协调和管理服务是一个复…

新交友盲盒+付费进群二合一源码+视频教程

盲盒交友脱单系统 包括项目前端和后端的讲解、宝塔面板的安装教程&#xff0c;以及盲盒交友和付费进群二合一的搭建教程。无论你是技术小白还是有一定技术基础&#xff0c;都能轻松搭建出属于自己的盲盒交友平台。

如何利用React和Python构建强大的网络爬虫应用

如何利用React和Python构建强大的网络爬虫应用 引言&#xff1a; 网络爬虫是一种自动化程序&#xff0c;用于通过互联网抓取网页数据。随着互联网的不断发展和数据的爆炸式增长&#xff0c;网络爬虫越来越受欢迎。本文将介绍如何利用React和Python这两种流行的技术&#xff0c…

日立EX-PROII+系列全新升级,智慧随心控畅享新生活

随着科技的进步&#xff0c;各种智能家电也开始走入人们的生活&#xff0c;而在这个领域&#xff0c;日立用技术创新生活&#xff0c;不断为新时代注入活力&#xff0c;推出日立 EX-PROII系列家用净化中央空调&#xff0c;贯彻“小身材&#xff0c;大能量”核心设计理念&#x…

Redis 缓存预热、缓存雪崩、缓存击穿、缓存穿透业务实践

0、前言 本文所有代码可见 > 【gitee code demo】 本文会涉及 缓存预热、缓存雪崩、缓存击穿、缓存穿透介绍和解决方案业务实践 1、缓存预热 1.1、描述 提前将热点数据加载到缓存&#xff0c;提前响应&#xff0c;降低后端数据源访问压力 1.2、实践 Autowiredprivate R…

[推荐]有安全一点的网贷大数据信用查询网站吗?

在互联网金融日益发展的今天&#xff0c;网贷大数据查询网站成为了许多人申贷前的必备工具。随着使用这些网站的人群越来越多&#xff0c;安全问题也逐渐浮出水面。最近&#xff0c;就有许多用户反馈自己的个人信息在网贷大数据查询网站上被泄露。为了解决这一问题&#xff0c;…

2毛钱不到的2A同步降压DCDC电压6V频率1.5MHz电感2.2uH封装SOT23-5芯片MT3520B

前言 2A&#xff0c;2.3V-6V输入&#xff0c;1.5MHz 同步降压转换器&#xff0c;批量价格约0.18元 MT3520B 封装SOT23-5 丝印AS20B5 特征 高效率&#xff1a;高达 96% 1.5MHz恒定频率操作 2A 输出电流 无需肖特基二极管 2.3V至6V输入电压范围 输出电压低至 0.6V PFM 模式可在…

Open WebUI升级到最新版本

背景介绍 open-webui是一个用于构建Web用户界面的开源库&#xff0c;它仿照 ChatGPT 的图形化界面&#xff0c;可以非常方便的调试、调用本地大语言模型。 目前该开源库更新较为活跃&#xff0c;从3个月前的版本&#xff08;v0.1.108&#xff09;到截止到2024年6月中旬发布的…

2006年下半年软件设计师【上午题】试题及答案

文章目录 2006年下半年软件设计师上午题--试题2006年下半年软件设计师上午题--答案2006年下半年软件设计师上午题–试题

OCR训练和C#部署英文字符训练

PaddleOCR是一个基于飞桨开发的OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别&#xff09;系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。以下是其优点&#xff1a; 高精度&#xff1a;PaddleOCR采用深度学习算法进行训练…

Java校园跑腿小程序校园代买帮忙外卖源码社区外卖源码

&#x1f525;校园跑腿与外卖源码揭秘&#x1f525; &#x1f680; 引言&#xff1a;为何需要校园跑腿与外卖源码&#xff1f; 在快节奏的校园生活里&#xff0c;学生们对于便捷、高效的服务需求日益增长。校园跑腿和外卖服务成为了解决这一需求的热门选择。然而&#xff0c;…

爬虫笔记17——selenium框架的使用

selenium框架的使用 1、python程序安装selenium框架2、下载Chrome谷歌驱动3、selenium的基本使用4、多个标签页切换顺序混乱的问题 1、python程序安装selenium框架 # 在安装过程中最好限定框架版本为4.9.1 # pip install selenium 没有制定版本&#xff0c;非镜像下载也会比较…

秋招突击——第七弹——Redis快速入门

文章目录 引言Redis是什么 正文对象String字符串面试重点 List面试考点 压缩列表ZipList面试题 Set面试题讲解 Hash面试重点 HASHTABLE底层面试考点 跳表面试重点 ZSET有序链表面试重点 总结 引言 在项目和redis之间&#xff0c;我犹豫了一下&#xff0c;觉得还是了解学习一下…

设计模式5-策略模式(Strategy)

设计模式5-策略模式 简介目的定义结构策略模式的结构要点 举例说明1. 策略接口2. 具体策略类3. 上下文类4. 客户端代码 策略模式的反例没有使用策略模式的代码 对比分析 简介 策略模式也是属于组件协作模式一种。现代软件专业分工之后的第一个结果是框架语音应用程序的划分。组…

金顺心贸易有限公司简介

金顺心贸易有限公司成立于2015年&#xff0c;注册地位于风景如画的广西壮族自治区防城港市东兴市。 金顺心贸易如他们的名字一样&#xff0c;有着实实在在的业绩和口碑的。他们专注于国际贸易&#xff0c;主营越南进口食品&#xff1a;果汁饮料、春卷皮、调味品、汤底、米粉、…

RabbitMQ消息队列 安装及基本介绍

一.MQ介绍 Message Queue &#xff08;MQ&#xff09;是一种跨进程的通信机制&#xff0c;用于在系统之间进行传递消息。MQ作为消息中间件&#xff0c;可以进行异步处理请求&#xff0c;从而减少请求响应时间和解耦 1.1 应用场景 1.1.1 系统之间通过MQ进行消息通信&#xff0…